RSS I: Recap, and What's Next?

RSS Lecture 21 Wednesday 15 May 2013 Prof. Teller

TODAY (final class meeting)

- CI-M evaluations (paper)
 - Distributed by Ms. Connor
 - 10 minutes to fill out at end of class meeting
 - Collected by student, returned to WP office
- Recap of RSS
 - Prof. Teller
- Reminder: online subject evaluations!
 - Please fill them out after the challenge runs

Key Questions

- What were we trying to do in RSS?
- What we covered this term:
 - In Lecture
 - In Forum
 - In Lab
- Where might you go from here?
 - Other robotics-related activities at MIT and beyond

RSS I: Teaching Objectives

- Intensive introduction to mobile robotics
 - Focus on autonomous mobility & manipulation
 - End-to-end, systems perspective on robotics
 - Exposure to fundamental robotics algorithms
 - Mens et manus: lecture and lab
 - Hands on literally every aspect of a mobile robot
 - Generalists! With depth in some area of interest
 - Course challenge: 4-7 week scope
 - Authentic, intense team-based design experience
 - Flexibility to choose your technical focus, roles
- Communication
 - Briefings, engineering documents, schedules
 - Team techniques, coordination and dynamics
 - Debates: arguing policy and ethical perspectives

Higher-level Capabilities

- Object detection & visual servoing

 Rudimentary computer vision, motion control
- Wall-following / local mapping
 Filtering and estimation from noisy sonar data
- Global path planning and execution
 Provided map, cast planning as search
- Manipulation
 - Inverse kinematics of a 3-DOF manipulator
 - Position-controlled servos, integration w/vision
- Mobile manipulation
 - Coordinated motion, manipulation for building

Whole Areas We Didn't Get To

- Factory automation
- Walking, flying, swimming, climbing robots
- Biologically-inspired robots
- Medical robotics & haptics
- Mobile manipulation robots
- Space robotics
- Learning robots
- Assistive robots & exoskeletons
- · Field and service robots
- Evolutionary robotics
- Neurorobotics

Where might you go from here?

- EECS subjects
 - Machine vision, RSS II, Underactuated robotics, Assistive technology, Machine learning, Inference and information, ...
- Aero/Astro subjects
 - Real-time systems and software, Cognitive robotics, ...
- MechE subjects
 - Robotics, Design of electromechanical robotic systems, Probabilistic methods for robotics, Hands-on marine robotics, ...
- Media Lab subjects
 - Human-robot interaction, Human 2.0
- IAP competitions
 - 6.270, MASIab
- UROPs, LA'ing, 6.UAP, MEng, etc.

Robotics Research at MIT

- Research (UROP, UAP,
 - MEng, SM, PhD)
 - RRG (Nick Roy)
 - RLG (Tedrake)
 - RVSN (Teller)
 - DRG (Rus)
 - CMG (Deb Roy)
 - SMG (Breazeal)
 - IRG (Shah)
 - ARES (Frazzoli)
 - MERS (Williams)

- LIST (Asada)
- BRL (Kim)
- HAL (Cummings)
- IRG (Shah)
- NSL (Slotine)
- Biomechatronics (Herr)
- LISG (TLP, LPK)
- COE (Leonard)
- ACL (How)
- HRG (Hover)

Robotics research post-MIT

- Academic labs
 - Berkeley, Stanford, U. Washington, CMU Robotics Institute, Penn GRASP Lab, Georgia Tech, Virginia Tech, IHMC (Florida Inst. for Human & Machine Cognition),

Industrial labs

- Honda, Toyota, Mitsubishi, Microsoft, Google, ...

Government labs

 NASA JPL, NASA Johnson, NRL, ARL, ONR, NIST, ARDEC, Dept. of Energy, Sandia, ...

Industry (small sample)

- iRobot, Kinetiq, ...
- Adept, Kiva Robotics, ...
- Jaybridge, Harvest Automation, ...
- Mitsubishi (Wakamaru), Aldebaran, Willow Garage, PAL, ...
- Rethink Robotics, ...
- Boston Dynamics, ...
- Intuitive (DaVinci), Titan, ...
- Rewalk, Indego (exoskeletons), ...
- John Deere, Ford, Honda, Toyota, ...
- OSRF (non-profit)

Summarizing...

- Tried to give you a *taste* of robotics:
 - In all its interdisciplinary richness: geometry, inference, estimation, optimization, physics, mechanical engineering, electrical engineering, computer science, cognitive science, ...
- ... and as an engineering endeavor
 - -Systems thinking
 - Engineering tools and methods
 - -Managing constraints, complexity
 - -Spiral dev't, deadlines and milestones
 - Team dynamics

At the end of the day (term!)

- RSS is a real engineering experience

 Structured component (lectures, labs)
 Less-structured component (challenge)
- With deliverables, communications – Briefings, proposal drafts/revisions, debate
- Regardless of where you are headed
 We hope that the tools and techniques we practiced in RSS will serve you well
- Best of luck in all that you do next!