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SLAM Problem Statement

e Inputs:
—No external coordinate reference
—Time series of proprioceptive and
exteroceptive measurements* made

as robot moves through an initially
unknown environment

e Outputs:
—A map* of the environment

—A robot pose estimate associated with
each measurement, in the coordinate

system in which the map is defined
*Not yet fully defined




SLAM Problem -- Incremental

e State/Output:
—Map of env’'t observed “so far”
—Robot pose estimate w.r.t. map
e Action/Input:
—Move to a new position/orientation
—Acquire additional observation(s)
e Update State:
—Re-estimate the robot’s pose
—Revise the map appropriately

SLAM Aspects

e \WWhat is a measurement?

e What is a map?

e How are map, pose coupled?
e How should robot move?

e \What is hard about SLAM?

e But first: some intuition




Intuition: SLAM
without Landmarks
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With Landmark Measurements
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Illustration of SLAM with
Landmarks

e Second position: two new
—® features observed
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* Re-observation of first two
features results in improved
estimates of both vehicle
pose and features
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Illustration of SLAM with
Landmarks
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e Third measurement:

T ® two additional features
are added to the map

lllustration of SLAM with
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* Re-observation of first four
features results in improved
location estimates for vehicle
poses and all map features




Illustration of SLAM with
Landmarks

* Process continues as the
vehicle moves through the
environment

Why is SLAM Hard?

» “Grand challenge”-level robotics problem

—Autonomous, persistent, collaborative robots
mapping multi-scale, generic environments

* Map-making = learning
—Difficult even for humans
—Even skilled humans make mapping mistakes

e Scaling issues
—Space: Large extent (combinatorial growth)
—Time: Persistent autonomous operation

» “Chicken and Egg” nature of problem
—If robot had a map, localization would be easier
—If robot could localize, mapping would be easier
—... But robot has neither; starts from blank slate
—Must also execute an exploration strategy

» Uncertainty at every level of problem




Uncertainty in Robotic Mapping

Uncertainty: |Continuous |Discrete
Scale:
Local Sensor Data
noise association
Global Navigation |Loop
drift closing
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Common range-and-bearing sensors

Polaroid sonar ring
12 range returns,

—
one per 30 (+ servoed
rotation
degrees, at ~4 Hz )
Robot T
e
pry—
o s o
SICK laser scanner |
—

180 range returns,
one per degree,
at 5-75 Hz

Other possibilities: Stereo/monocular vision; Robot itself (stall, bump sensing)

Tracking & long-baseline monocular vision
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Track points, edges, texture
patches from frame to frame;
triangulate to recover local 3D
structure. Also called “SFM,”
Structure From camera Motion,
or object motion in the image
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Sonar Data
aggregated over
multiple poses
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Gutman, Konolige




Laser Data
aggregated over
multiple poses

What is a map?

e Collection of features with some
relationship to one another

e What is a feature? +«——— Uncertainty
— Occupancy grid cell
—Line segment
— Surface patch

e What is a feature relationship?
—Rigid-body transform (metrical mapping)
—Topological path (chain of co-visibility)
—Semantics (label, function, contents)
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Atlas hybrid maps (Bosse et al.)
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Features: point, line, patch clouds

Geometry: rigid frames, submaps

Topology: map adjacencies

Hybrid: uncertain map-to-map transformations

What is pose w.r.t. a map?

e Pose estimate that is (maximally)
consistent with the estimated
features observed from vicinity

e Consistency can be evaluated
locally, semi-locally, or globally

 Note tension between
estimation precision
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and solution consistency
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Example

e SLAM with laser scanning
e Observations
e Local mapping
— Iterated closest point
e Loop closing
—Scan matching
—Deferred validation
—Search strategies

Observations
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Observations
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Scan Matching

» Robot scans, moves, scans again

e Short-term odometry/IMU error
causes misregistration of scans

e Scan matching is the process of
bringing scan data into alignment

1 2 1 22
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Ground truth (unknown) — Scan from pose 1 — Scan from pose 2
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Iterated Closest Point

e For each point in scan 1
—Find the closest point in scan 2 (how?)

T Are all of these
...... \ matches correct?

Iterated Closest Point

e Find the transformation that best
aligns the matching sets of points
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What happens to the estimate of
the relative vehicle pose between
sensor frames 1 & 2 ?
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Iterated Closest Point
e ... Repeat until convergence

Note applied

> & 1> & pose update
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e Can do ICP across scans, across a scan
and a (sub)map, or even across submaps!

Limitations / failure modes

e Computational cost (two scans of size n)
— Naively, O(n?) plus cost of alignment step

e False minima

—If ICP starts far from true alignment

— If scans exhibit repeated local structure
e Bias

— Anisotropic point sampling

— Differing sensor fields of view (occlusion)

e Lots of research on improved ICP
methods (see, e.g., Rusinkiewicz)
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Loop Closing

e |CP solves small-scale, short-duration
alignment fairly well ~__—

- But now, consider: ', A\
—Large scale ¥
—High uncertainty \

Gutman, Konolige

Loop Closing

e Naive ICP ruled out:
— Too CPU-intensive

e Assume we have a
pose uncertainty bound

e This limits the portion
of the existing map that
must be searched

« Still have to face the
problem of matching
two partial scans that
are far from aligned

Gutman, Konolige
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Scan Matching Strategies

= Exhaustive search
— Discretize robot poses
— Find implied alignments
— Assign score to each
— Choose highest score
— Pros, Cons?

e Randomized search

— Choose minimal suff-
icient match, at random

— Align and score

— Choose highest score PNl d P
— RANSAC (1981) pay Gutman, Konolige
— Pros, Cons?

Loop Closing Ambiguity
e Consider SLAM state after ABC ... XY
Large open-loop

navigation uncertainty
Y matches both A & B

... What to do?
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Loop Closing Choices

e Choose neither match

—Pros, cons? L«
o/ \\
e Choose one match AR &
—Pros, cons? B\ Y v

e Choose both matches ee@

—Pros, cons?

Deferred Loop Validation
e Continue SLAM until Z matches C
e Examine graph for —identity cycle
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Some SLAM results

e See rvsn.csail.mit.edu group page

. But what’s missing?

e Is topology enough?
e Are topology and geometry enough?
e ... What else is there?
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Localization from a Prior Map

(Just the “L” part of SLAM)
The method shown here uses only a single Kinect

(Fallon et al.)

Expository Video

Summary

e SLAM is a hard robotics problem:
— Requires sensor fusion over large areas
— Scaling issues arise quickly with real data
» Key issue is managing uncertainty
— At both low level and high level
— Both continuous and discrete
e Saw several SLAM strategies
— Local and global alignment
— Randomization
— Deferred validation
e SLAM is only part of the solution for most
applications (need names, semantics)




