Simultaneous Localization and Mapping (SLAM)

RSS Lecture 16
April 8, 2013
Prof. Teller
Text: Siegwart and Nourbakhsh S. 5.8

SLAM Problem Statement

- Inputs:
 - No external coordinate reference
 - Time series of proprioceptive and exteroceptive measurements* made as robot moves through an *initially unknown* environment

- Outputs:
 - A *map* of the environment
 - A robot *pose estimate* associated with each measurement, in the coordinate system in which the map is defined

*Not yet fully defined
SLAM Problem -- Incremental

- State/Output:
 - Map of env’t observed “so far”
 - Robot pose estimate w.r.t. map
- Action/Input:
 - Move to a new position/orientation
 - Acquire additional observation(s)
- Update State:
 - Re-estimate the robot’s pose
 - Revise the map appropriately

SLAM Aspects

- What is a measurement?
- What is a map?
- How are map, pose coupled?
- How should robot move?
- What is hard about SLAM?

- But first: some intuition
Intuition: SLAM without Landmarks

Using only dead reckoning, vehicle pose uncertainty (and thus the uncertainty of map features) grows without bound.

With Landmark Measurements

- First position: two features observed
Illustration of SLAM with Landmarks

- Second position: two new features observed

Illustration of SLAM with Landmarks

- Re-observation of first two features results in improved estimates of both vehicle pose and features
Illustration of SLAM with Landmarks

• Third measurement: two additional features are added to the map

Illustration of SLAM with Landmarks

• Re-observation of first four features results in improved location estimates for vehicle poses and all map features
Illustration of SLAM with Landmarks

- Process continues as the vehicle moves through the environment

Why is SLAM Hard?

- “Grand challenge”-level robotics problem
 - Autonomous, persistent, collaborative robots mapping multi-scale, generic environments
- Map-making = learning
 - Difficult even for humans
 - Even skilled humans make mapping mistakes
- Scaling issues
 - Space: Large extent (combinatorial growth)
 - Time: Persistent autonomous operation
- “Chicken and Egg” nature of problem
 - If robot had a map, localization would be easier
 - If robot could localize, mapping would be easier
 - ... But robot has neither; starts from blank slate
 - Must also execute an exploration strategy
- **Uncertainty** at every level of problem
Uncertainty in Robotic Mapping

<table>
<thead>
<tr>
<th>Uncertainty:</th>
<th>Continuous</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>Sensor noise</td>
<td>Data association</td>
</tr>
<tr>
<td>Global</td>
<td>Navigation drift</td>
<td>Loop closing</td>
</tr>
</tbody>
</table>

MIT Killian Court

- **Odometry**
 - (two hours, 15 minutes; 2.2 km)

- **Path**

- **Laser**

- **Sonar**
Common range-and-bearing sensors

Polaroid sonar ring
12 range returns, one per 30 degrees, at ~4 Hz

SICK laser scanner
180 range returns, one per degree, at 5-75 Hz

Other possibilities: Stereo/monocular vision; Robot itself (stall, bump sensing)

Tracking & long-baseline monocular vision

Track points, edges, texture patches from frame to frame; triangulate to recover local 3D structure. Also called “SFM,” Structure From camera Motion, or object motion in the image
Sonar Data aggregated over multiple poses

Loop Closing

Gutman, Konolige
What is a map?

- Collection of features with some relationship to one another
- What is a feature?
 - Occupancy grid cell
 - Line segment
 - Surface patch
- What is a feature relationship?
 - Rigid-body transform (metrical mapping)
 - Topological path (chain of co-visibility)
 - Semantics (label, function, contents)
Atlas hybrid maps (Bosse et al.)

- Features: point, line, patch clouds
- Geometry: rigid frames, submaps
- Topology: map adjacencies
- Hybrid: uncertain map-to-map transformations

What is pose w.r.t. a map?

- Pose estimate that is (maximally) *consistent* with the estimated features observed from vicinity
- Consistency can be evaluated locally, semi-locally, or globally
 - Note tension between estimation *precision* and solution *consistency*
Example

- SLAM with laser scanning
- Observations
- Local mapping
 - Iterated closest point
- Loop closing
 - Scan matching
 - Deferred validation
 - Search strategies

Observations
Observations

1.

2.

3.

Scan Matching

- Robot scans, moves, scans again
- Short-term odometry/IMU error causes misregistration of scans
- *Scan matching* is the process of bringing scan data into alignment
Iterated Closest Point

• For each point in scan 1
 – Find the closest point in scan 2 (how?)

Are all of these matches correct?

Iterated Closest Point

• Find the transformation that best aligns the matching sets of points

What happens to the estimate of the relative vehicle pose between sensor frames 1 & 2?
Iterated Closest Point

• ... Repeat until convergence

• Can do ICP across scans, across a scan and a (sub)map, or even across submaps!

Limitations / failure modes

• Computational cost (two scans of size n)
 – Naively, $O(n^2)$ plus cost of alignment step

• False minima
 – If ICP starts far from true alignment
 – If scans exhibit repeated local structure

• Bias
 – Anisotropic point sampling
 – Differing sensor fields of view (occlusion)

• Lots of research on improved ICP methods (see, e.g., Rusinkiewicz)
Loop Closing

- ICP solves small-scale, short-duration alignment fairly well
- But now, consider:
 - Large scale
 - High uncertainty

Loop Closing

- Naive ICP ruled out:
 - Too CPU-intensive
- Assume we have a pose *uncertainty bound*
- This limits the portion of the existing map that must be searched
- Still have to face the problem of matching two partial scans that are far from aligned
Scan Matching Strategies

- **Exhaustive search**
 - Discretize robot poses
 - Find implied alignments
 - Assign score to each
 - Choose highest score
 - Pros, Cons?

- **Randomized search**
 - Choose minimal sufficient match, at random
 - Align and score
 - Choose highest score
 - RANSAC (1981)
 - Pros, Cons?

Loop Closing Ambiguity

- Consider SLAM state after ABC ... XY
 - Large open-loop navigation uncertainty
 - Y matches *both* A & B
 - ... What to do?
Loop Closing Choices

- Choose neither match
 - Pros, cons?
- Choose one match
 - Pros, cons?
- Choose both matches
 - Pros, cons?

Deferred Loop Validation

- Continue SLAM until Z matches C
- Examine graph for ~identity cycle
Some SLAM results

- See rvsn.csail.mit.edu group page

... But what’s missing?

- Is topology enough?
- Are topology and geometry enough?
- ... What else is there?
Localization from a Prior Map
(Just the “L” part of SLAM)
The method shown here uses only a single Kinect

Method (Fallon et al.)

Expository Video

Summary

• SLAM is a hard robotics problem:
 – Requires sensor fusion over large areas
 – Scaling issues arise quickly with real data

• Key issue is managing uncertainty
 – At both low level and high level
 – Both continuous and discrete

• Saw several SLAM strategies
 – Local and global alignment
 – Randomization
 – Deferred validation

• SLAM is only part of the solution for most applications (need names, semantics)