
1

Configuration Space
for Motion Planning

RSS Lecture 12

Monday, 18 March 2013

Prof. Seth Teller
Siegwart & Nourbahksh S 6.2

(Thanks to Nancy Amato, Rod Brooks, Vijay Kumar,
and Daniela Rus for some of the figures)

Today
• Configuration space

– Intuition

• Preliminaries
– Minkowski sums

– Convexity, convex hulls

• Configuration space
– Definition

– Construction

• Rigid (low-DOF) motion
– Deterministic methods

• Articulated (high-DOF) motion
– Randomized methods

2

Intuition

RobotRobot
origin

Obstacle

• Suppose robot can move only by translating in 2D

• How can it move in the presence of an obstacle?
• Represent robot by its origin (how many DOFs?) 2

• How to describe infeasible placements of robot origin?

Infeasibility Under Translation

Robot

Robot origin

Locus of infeasible
placements of
robot origin

Obstacle

3

What if Robot can also Rotate?

Robot at +/6
orientation

Robot origin

Obstacle

Infeasibility under 3-DOF Motion

Robot at +/6
orientation

Robot origin Locus of infeasible
placements of origin
with robot at +/6
orientation

Obstacle

4

Configuration Space
For a robot with k total motion DOFs, C-space is a

coordinate system with one dimension per DOF

(Latombe 1991)

In C-space, a robot pose is simply a point!

… and a workspace obstacle is a complex volume

Motion Planning Transformation

Robot

obst

obst

obst

obst

x
y

C-obst

C-obstC-obst

C-obst

Robot
Path is hard to express Path is space curve

Workspace
(x, y)

C-space
(x, y,)

5

Configuration Space Idea

Constraints
due to obstacle

geometry

Robot
geometry

Point
geometry

Transformed
constraints

Interaction
(difficult to

characterize)

Interaction
(simple to

characterize)

Transformation to
equivalent problem
in higher dimension

Workspace

C-space

C-space Summary, Examples

C-obst

C-obst

C-obst

C-obst

C-obst

Some example configuration spaces:

6D C-space
(x, y, z, ψ, φ)

3D C-space
(x, y,)

3D C-space
()

• Define space with one dimension
per DOF of robot motion / pose

• Map robot to a point in this space
• C-space = all robot configurations
• C-obstacle = locus of infeasible
configurations due to obstacle

2n-D C-space
(1, 1, 2, 2, . . . , n, n)

Translation +
rotation in 2D

Translation +
rotation in 3D

3-link
arm

Molecule with n
fixed-length bonds

6

Computing C-obstacles
• Digression to introduce two geometric tools

– Convex hull algorithms

– Minkowski addition

Convexity
• A set S is convex if and only if every line segment

connecting two points in S is contained within S

• Which of these
are convex?

Yes No

NoNo

7

Convex Hull of a Set of Points
• Intuition: stretch a rubber band around point set

v = ci
. pi, ci ≥ 0, ci = 1

Convex Hull: Formal Definitions

• Which of these are constructive / algorithmic?

8

Computing 2D Convex Hull
• Input: set S of N points (xi, yi) in 2D

• Output: polygonal boundary of convex hull of S

S Convex(S)

• How can Convex(S) be computed (efficiently)?

H[0]

H[1]
H[2]

…H[h-1]

H[h-2] …

S[0]

S[1]

S[2]

S[N-1]

The Leftof Predicate
• Input: three points p, q, r

• Function Leftof (p, q, r) // argument order matters

• Output: 1 iff r is left of directed line pq, otherwise -1

p
q

r How to implement Leftof()?

1. Compute sign of determinant

2. Equivalently, find sign of z

component of (q-p) x (r-p)

1 rx ry

1 px py

1 qx qy

p
q

r

q-p

r-p

9

Brute Force Solution
Identify point pairs that form edges of Convex(S)

I.e. for each pair p, q ∈ S, if ∀ r ∈ S – {p, q}, r lies

left of the directed line pq, emit boundary edge pq

Running time for input of n points? O(n2 x n) = O(n3)

Can do better: O(n2), O(n log n), O(nh), O(n log h) !

Jarvis March Algorithm
pivot = leftmost point in S; i = 0 // leftmost point must be on convex hull

repeat

H[i] = pivot // store hull vertices in output point list H[i], 0 i < h

endpoint = S[0] // check candidate hull edge [pivot .. endpoint]

for j from 1 to |S|-1

if (Leftof (pivot, endpoint, S[j]))

endpoint = S[j]

pivot = endpoint; i++

until endpoint == H[0]

Outer loop runs h times;

inner loop does O(n) work

Running time for input

set of n points? O(nh) “Output-sensitive” algorithm.

H[0]
H[1]

H[2]

H[h-1]
…

S[0] S[1]

S[2]

(Let h = number of points on hull)

10

Minkowski Addition
• Given two sets A,B ∈ Rd, their Minkowski sum,

denoted A ⊕B, is the set { a + b | a ∈A, b ∈B }
– Result of adding each element of A to each element of B

• If A & B convex, just add vertices & find convex hull:

y

x

A

B

y

x

y

x

A ⊕ B

A

B

Computation of C-obstacles
• Inputs: robot polygon R and obstacle polygon S

• Output: c-space obstacle c-obstacle(S, R)

x

y

y

x

obstacle
robot

y

x

obstacle

c-obstacle

11

C-obstacle Computation
1. Reflect robot R about its origin to produce R’

2. Compute Minkowski sum of R’ and obstacle S

y

x

obstacle

x

y
robot

x

y

R’

Sanity check: shaded region is infeasible for
the origin of the original (unreflected) robot.

c-obstacle

1.

2.

R’

R’ R’

R’S

Why Reflect the Robot?

Obstacle

x

y

Robot

x

y

R’ Shown above are contacts between
robot edges and obstacle vertices.
What happens when robot vertices
contact obstacle edges?

Reflection
about origin

12

C-obstacles with Rotations

How do we compute this object?

Back to Motion Planning
• Given robot and set of obstacles:

– Compute C-space representation of obstacles

– Find path from robot start pose to goal pose (point)

• Unfortunately, we have a rather serious problem:
– We have constructed a representation of the obstacles

– But we need to search a representation of the freespace!

13

Computational Complexity
• The best deterministic motion planning algorithm

known requires exponential time in the C-space
dimension [Canny 1986]

• D goes up fast – already D=6 for a rigid body in
3-space; articulation adds many more DOFs

• Simple obstacles have
complex C-obstacles

• Impractical to compute
explicit representation
of freespace for robot
with many DOFs

• What to do? Approximate and/or randomize.

Strategies
• Approximate: use regular subdivision of freespace

• Randomize: sample and evaluate C-space poses

• Trade away completeness for gains in efficiency

start

goal

C-obst

C-obst

C-obst

C-obst

C-obst

14

Approximate Cell Decomposition

• Advantage: recasts complex original problem as
search within space of many, simpler motion plans

Probabilistic Road Maps for
Motion Planning [Kavraki et al. 1996]

1. Add start and goal poses into the roadmap

Plan Generation (Query processing)start

goal

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap edges
- Use simple, deterministic local planner
- Discard invalid edges (how?)

1. Randomly generate robot configurations (nodes)
- Discard invalid nodes (how?)

C-obst

C-space

2. Find path from start to goal within roadmap
3. Generate a motion plan for each edge used

Requires two primitive operations:
1. Method for sampling C-Space points
2. Method for “validating” C-space points and edges

15

PRMs: Pros and Cons
Advantages

1. Probabilistically complete
2. Easily applied to high-dimensional C-spaces
3. Supports fast queries (w/ enough preprocessing)

Many success stories in which PRMs were
applied to previously intractable problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

Disadvantages

PRMs don’t work well for some problems:
– Unlikely to sample nodes in narrow passages
– Hard to connect nodes along constraint surfaces

start

goal

C-obst

C-obst

C-obst

C-obst
? ? ?

Sampling Around Obstacles:
OBPRM [Amato et al. 1998]

start

goal

C-obst

C-obst

C-obst

C-obst

To navigate narrow passages we must sample inside them
Most PRM nodes placed where planning is easy, not where it’s hard

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle surfaces?
• We cannot explicitly construct the C-obstacles, but...
• We do have models of the (workspace) obstacles!

OBPRM Roadmap

16

Finding Points on C-obstacles

1

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2. Select random direction in C-space
3. Find freespace point in that direction
4. Find boundary point between points

using binary search (collision checks)

Note: we can use more sophisticated
approaches to try to “cover” C-obstacle

C-obst

2

3

4

Summary
• Introduced drastically simplifying transformation

– Based on two useful geometric constructions

• Enables use of familiar techniques…
– Discretization

– Random sampling

– Bisection

– Graph search

• … To solve high-dimensional motion planning

• We’ll use these ideas in Lab 6 (path planning)

