
1

Motion Planning I

RSS Lecture 10

Monday, 11 Mar 2013

Prof. Seth Teller
Siegwart & Nourbakhsh Ch. 6

Today
• Problem statement

• Motion planning module in context

• Bug algorithms for point robots in the plane

• Motion planning as search
– Visibility graph algorithm

– Discretization and A*

– Potential Field method

2

Motion Planning Intuition
• What series of motions will get robot to goal?

• Are there cases in which no such motion exists?

Start

Goal

?

Start

Goal?

Bug Algorithm (for Point Robots)

• Simple algorithm based on four assumptions:
– Perfect knowledge of direction and distance to goal

– Ability to distinguish freespace from obstacle contact

– Ability to move along an arbitrary obstacle boundary

– Ability to detect whenever a location is revisited

• Which assumptions are strong? Weak?

Start Goal

3

Bug Motion Planning Algorithm
• Repeatedly advance toward goal

• Upon encountering an obstacle:
– Completely circumnavigate it counter-clockwise, then

depart from point P that minimizes distance to goal

• Advantages? Drawbacks?

• Many variants: Bug2, BugDist, BugTangent…

Start Goal

P

Complete Motion Planning

• Formal statement of motion planning problem:
– Compute a collision-free path for a rigid or articulated

moving object among static (or dynamic) obstacles

• Ideally we desire a “complete” motion planner:
– If a solution exists, planner is guaranteed to return it

– Otherwise, planner indicates that no solution exists

• CMP is known to be computationally intractable
– In general it requires exponential running time in the

number of DOFs (articulation, # of obstacles etc.)

– … Even with access to perfect, global information!

4

Planning Under Uncertainty
• How can robot move from starting configuration

to a goal configuration despite uncertainty:
– Imperfect prior knowledge (map errors, footprint)

– Imperfect perception (sensor range limits, errors)

– Imperfect reasoning (inference errors)

– Imperfect execution (actuation errors)

– Imperfect prediction (dynamic world)

Start

Goal

?

Deliberative Architecture

Sense

Plan

Execution of desired action

Local data about state of world, robot

Global world representation

Act

Model

Representation of desired action

Modified world, robot state

Goal State

Source of goals?
– Prior knowledge

– Supplied externally

– Computed internally

5

Off-Line Motion Planning

Start

Goal

• Today, we’ll make some strong assumptions:
– Robot has perfect map of start, obstacles, goal

– Robot can localize itself globally with no error

Motion Planning Intuition

Start

Goal

• We want robot to stay far from obstacles

… But we don’t yet have a suitable

representation of freespace to work with

6

Observation

Start

Goal

• If there exists a collision-free path from start to
goal, then there exists a piecewise-linear path
involving only start, goal and obstacle vertices

Visibility Graph Algorithm

Start

Goal

• Construct graph G = (V, E)
– V = {obstacle vertices} υ {Start, Goal}

7

Visibility Graph Algorithm

Start

Goal

• Construct graph G = (V, E)
– V = {obstacle vertices} υ {Start, Goal}

– E = edges (vi, vj) disjoint from obstacle interiors

Find Shortest Path in Graph G
• Use Dijkstra’s algorithm rooted at start vertex

Start

Goal

8

Dijkstra’s Algorithm

1 function Dijkstra (G, w, s) // Graph G, weights w, source s
2 for each vertex v in V[G] // Initialize d[], previous, S, and Q
3 d[v] := ∞ // Vertex v is not yet reached
4 previous[v] := undefined // … so there’s no path to it yet
5 d[s] := 0 // Source reachable with zero cost
6 S := empty set // Set of vertices reached so far
7 Q := set of all vertices // Set of candidate vertices
8 while Q is not an empty set // While unreached vertices
9 u := vtx v in Q with minimum d[v] // O(n) search or Fibonacci heap
10 S := S union {u} // Vertex u reached
11 for each edge (u, v) // For each neighbor v of u
12 if d[u] + w(u,v) < d[v] // If lower-cost path to v exists via u
13 d[v] := d[u] + w(u,v) // … update cost to v
14 previous[v] := u // … and update path record

Single-source Shortest Path

Application of Shortest-Path

• What do we use as edge weights? Turning times + edge transit times

• Memory usage? Quadratic in # obstacle vertices

• Running time? Cubic in input size (naively); O(|E| + |V| log |V|) query

• What major assumption have we made about the robot? It’s a point.

• Does this algorithm extend naturally to polyhedra in 3D? No; why not?

Start

Goal

9

A Point Robot?
• Can’t fit the robot into a zero-area point …

– Today we’ll address robot extent via discretization

– Next time we’ll see a much more elegant method

?

?

?

Discretizing Polygonal Obstacles
• How should we discretize freespace into a grid?

– Is this just like rendering polygons in graphics?

– To avoid collisions, we must account for robot’s extent !

10

Discretizing Polygonal Obstacles
• For today, assume robot is a disk with radius R

– Then for planning purposes, robot has only 2 DOFs (why?)

• Then a grid cell represents freespace if:
– It does not overlap with any obstacle
– It lies further than R from all obstacle edges

• Algorithm:
– Pick any grid cell that is

known to lie in freespace
– Do a breadth-first search (or

“flood-fill”) from the start cell
– As each cell is visited by the

search, compute the minimum
distance d to any obstacle edge

– If d > R, label cell “free” and recurse;
otherwise label cell “occupied”

– Once fill is complete, label any
unreached cells as “occupied”

Planning in Discrete State Space
• Cartesian space

• Actions take robot from
one state to another

• Objective: find a minimum-cost path
from the start state to the goal state

11

....

Planning as Tree Search

… How can such searching be made effective and efficient?

Move Generation

• Which state-action pair to consider next?

• Shallowest next
– Aka: Breadth-first search

– Guarantees shortest path

– But: storage-intensive

• Deepest next
– Aka: Depth-first search

– Can use minimal storage

– But: no optimality guarantee

12

Informed Search – A*

“Candidate states”
reachable through
available actions

… which action
should robot take?

Informed Search – A*

• Use domain knowledge to bias search order

• Favor actions that might get closer to the goal

• Each state gets assigned an approximate cost

f(x)= c(x) + h(x)

c(x) = cost incurred from
start state to graph node x

h(x) = estimated cost
from node x to goal,
aka “heuristic” cost

 Example:
 c(x) = 3, h(x) = ||x - goal|| = sqrt(82+182) = 19.7, so f(x) = 22.7

13

Informed Search – A*

• Each state x is assigned an approximate cost f:

f(x)= c(x) + h(x)

• Choose the candidate state with the minimum f

 Cost for another example candidate action is higher:
 c(x) = 4, h(x) = ||x-goal|| = sqrt(112+182) = 21.1, so f(x)=25.1

c(x) = cost incurred from
start state to graph node x

h(x) = estimated cost
from node x to goal,
aka “heuristic” cost

How to Construct Heuristics
• The more closely h(x) approximates the true

cost to the goal, h*(x), the more efficient the
search will be* …

BUT:

• In order for A* to find the optimal path, it must
be the case that h(x) ≤ h*(x)

• Why? Suppose this was not the case. Then
the search would discard some profitable action

• Such an h is called an “admissible” heuristic

*There is a subtle design tradeoff involved here – what is it?

14

A Problem with Plans
• We have a plan that

gets us from the
start to the goal

• But… what happens if
we depart from the plan?
– We can replan, or:

– We can maintain a policy,
i.e. a data structure that
can produce a plan given
any start location

Potential Field Method
• Real-time collision avoidance method [Khatib 1986]
• Construct scalar potential field throughout freespace

• Robot moves along negative gradient of potential field

Attraction to
goal location

Repulsion from
obstacle interiors

Sum

boundary

rep
xx

U



1

2

2

1
goalatt xxU 

15

Ideal Potential Field
• We want to construct the potential field so that it:

– Is nearly infinite close to obstacles
– Has a global minimum at the goal (so no local minima)
– Is smooth everywhere
– Does scalar method achieve this? No; local minima.

If only life were so easy…

• Initialize all states with cost ∞

• Assign cost of 0 to goal state

• Update each state x so that
f(x) = min(f(y) + c(y, x))

(minimize over neighbors y of x)

• Repeat until convergence

• Initialize all states with cost ∞

• Assign cost of 0 to goal state

• Update each state x so that
f(x) = min(f(y) + c(y, x))

(minimize over neighbors y of x)

• Repeat until convergence

Numerical Potential Field

0
1 1 1
1
1 1 1

1
2
2

2 2

2 2 2 2

3
3
3

4
4
4

5
5
5

6
6
6

7
7
7

8
8
8

9
9
9

10
10
10

11
11
11

12
12
12

13
13
13

14
14
14

15
15
15

6
6

3 3
4 4
5 5

6 6 6
7 7 7

Numbers shown are for an obstacle-induced cost
of ∞, and a goal-induced cost of 1 unit per grid cell (can
also make it costly to approach obstacles)

To plan from any node, simply move to cheapest neighbor

This is called
“Regression”
from the goal

16

Completeness

• Recall our definition of complete MP
– Is the visibility graph algorithm complete? Yes.

– Are the potential field algorithms complete? No.

Recap: Design Decisions
• How is your map described? This will have an

impact on the state space for your planner
– Is it a list of polygons?
– Is it a grid map?

• What are you trying to optimize?
– Minimum distance ? How?
– Minimum time ? How?
– Minimum energy ? How?

• What kind of search should you use?
– Can you formulate a reasonably good heuristic?
– If so, then A* can be a good choice

• Physical intuition can yield useful algorithms
– Potential field methods

