Motion Planning I

RSS Lecture 10
Monday, 11 Mar 2013
Prof. Seth Teller
Siegwart & Nourbakhsh Ch. 6

Today
• Problem statement
• Motion planning module in context
• Bug algorithms for point robots in the plane
• Motion planning as search
 – Visibility graph algorithm
 – Discretization and A*
 – Potential Field method
Motion Planning Intuition

- What series of motions will get robot to goal?
- Are there cases in which no such motion exists?

Bug Algorithm (for Point Robots)

- Simple algorithm based on four assumptions:
 - Perfect knowledge of direction and distance to goal
 - Ability to distinguish freespace from obstacle contact
 - Ability to move along an arbitrary obstacle boundary
 - Ability to detect whenever a location is revisited
- Which assumptions are strong? Weak?
Bug Motion Planning Algorithm

• Repeatedly advance toward goal
• Upon encountering an obstacle:
 – Completely circumnavigate it counter-clockwise, then depart from point P that minimizes distance to goal
• Advantages? Drawbacks?

• Many variants: Bug2, BugDist, BugTangent…

Complete Motion Planning

• Formal statement of motion planning problem:
 – Compute a collision-free path for a rigid or articulated moving object among static (or dynamic) obstacles
• Ideally we desire a “complete” motion planner:
 – If a solution exists, planner is guaranteed to return it
 – Otherwise, planner indicates that no solution exists
• CMP is known to be computationally intractable
 – In general it requires exponential running time in the number of DOFs (articulation, # of obstacles etc.)
 – … Even with access to perfect, global information!
Planning Under Uncertainty

- How can robot move from starting configuration to a goal configuration despite *uncertainty*:
 - Imperfect prior knowledge
 - Imperfect perception
 - Imperfect reasoning
 - Imperfect execution
 - Imperfect prediction

![Diagram showing a path from start to goal]

Deliberative Architecture

1. **Sense**
 - Local data about state of world, robot

2. **Model**
 - Global world representation

3. **Plan**
 - Representation of desired action

4. **Act**
 - Execution of desired action

Source of goals?
- Prior knowledge
- Supplied externally
- Computed internally
Off-Line Motion Planning

Today, we’ll make some strong assumptions:
- Robot has perfect map of start, obstacles, goal
- Robot can localize itself globally with no error

Motion Planning Intuition

- We want robot to stay far from obstacles

... But we don’t yet have a suitable representation of freespace to work with
Observation
• If there exists a collision-free path from start to goal, then there exists a piecewise-linear path involving only start, goal and obstacle vertices

Visibility Graph Algorithm
• Construct graph $G = (V, E)$
 – $V = \{\text{obstacle vertices}\} \cup \{\text{Start, Goal}\}$
Visibility Graph Algorithm

- Construct graph $G = (V, E)$
 - $V = \{\text{obstacle vertices}\} \cup \{\text{Start, Goal}\}$
 - $E = \text{edges } (v_i, v_j) \text{ disjoint from obstacle interiors}$

Find Shortest Path in Graph G

- Use Dijkstra’s algorithm rooted at start vertex
Algorithm

Single-source Shortest Path

1 function Dijkstra (G, w, s) // Graph G, weights w, source s
2 for each vertex v in V[G] // Initialize d[], previous, S, and Q
3 d[v] := ∞ // Vertex v is not yet reached
4 previous[v] := undefined // … so there’s no path to it yet
5 d[s] := 0 // Source reachable with zero cost
6 S := empty set // Set of vertices reached so far
7 Q := set of all vertices // Set of candidate vertices
8 while Q is not an empty set // While unreached vertices
9 u := vtx v in Q with minimum d[v] // O(n) search or Fibonacci heap
10 S := S union {u} // Vertex u reached
11 for each edge (u, v) // For each neighbor v of u
12 if d[u] + w(u,v) < d[v] // If lower-cost path to v exists via u
13 d[v] := d[u] + w(u,v) // … update cost to v
14 previous[v] := u // … and update path record

Application of Shortest-Path

- What do we use as edge weights?
- Memory usage?
- Running time?
- What major assumption have we made about the robot?
- Does this algorithm extend naturally to polyhedra in 3D?
A Point Robot?

• Can’t fit the robot into a zero-area point …
 – Today we’ll address robot extent via discretization
 – Next time we’ll see a much more elegant method

Discretizing Polygonal Obstacles

• How should we discretize freespace into a grid?
 – Is this just like rendering polygons in graphics?

 – To avoid collisions, we must account for
Discretizing Polygonal Obstacles

- For today, assume robot is a disk with radius R
 - Then for planning purposes, robot has only 2 DOFs (why?)
- Then a grid cell represents freespace if:
 - It does not overlap with any obstacle
 - It lies further than R from all obstacle edges
- Algorithm:
 - Pick any grid cell that is known to lie in freespace
 - Do a breadth-first search (or “flood-fill”) from the start cell
 - As each cell is visited by the search, compute the minimum distance d to any obstacle edge
 - If $d > R$, label cell “free” and recurse; otherwise label cell “occupied”
 - Once fill is complete, label any unreached cells as “occupied”

Planning in Discrete State Space

- Cartesian space
- Actions take robot from one state to another
- Objective: find a minimum-cost path from the start state to the goal state
Planning as Tree Search

... How can such searching be made effective and efficient?

Move Generation

- Which state-action pair to consider next?
 - Shallowest next
 - Aka: Breadth-first search
 - Guarantees shortest path
 - But: storage-intensive
 - Deepest next
 - Aka: Depth-first search
 - Can use minimal storage
 - But: no optimality guarantee
Informed Search – A*

“Candidate states” reachable through available actions

… which action should robot take?

Informed Search – A*

- Use domain knowledge to bias search order
- Favor actions that might get closer to the goal
- Each state gets assigned an approximate cost

\[f(x) = c(x) + h(x) \]

- Example:
 - \(c(x) = 3 \), \(h(x) = \|x - \text{goal}\| = \sqrt{8^2 + 18^2} = 19.7 \), so \(f(x) = 22.7 \)
Informed Search – A*

- Each state \(x \) is assigned an *approximate cost* \(f \):
 \[
 f(x) = c(x) + h(x)
 \]

- Choose the candidate state with the minimum \(f \)
 - Cost for another example candidate action is higher:
 - \(c(x) = 4, \ h(x) = ||x\text{-goal}|| = \sqrt{11^2+18^2} = 21.1 \), so \(f(x) = 25.1 \)

\(c(x) \) = cost incurred from start state to graph node \(x \)
\(h(x) \) = estimated cost from node \(x \) to goal, aka “heuristic” cost

How to Construct Heuristics

- The more closely \(h(x) \) approximates the true cost to the goal, \(h^*(x) \), the more efficient the search will be*

 *There is a subtle design tradeoff involved here – what is it?

BUT:

- In order for A* to find the *optimal* path, it must be the case that
- Why? Suppose this was not the case. Then the search would
- Such an \(h \) is called an “admissible” heuristic
A Problem with Plans

• We have a plan that gets us from the start to the goal.

• But… what happens if we depart from the plan?
 – We can replan, or:
 – We can maintain a policy, i.e. a data structure that can produce a plan given any start location.

Potential Field Method

• Real-time collision avoidance method [Khatib 1986]

• Construct scalar potential field throughout freespace

\[U_{att} = \frac{1}{2} \left\| x - x_{\text{goal}} \right\|^2 \]

\[U_{rep} = \frac{1}{\left\| x - x_{\text{boundary}} \right\|} \]

• Robot moves along the gradient of potential field.
Ideal Potential Field

• We want to construct the potential field so that it:
 – Is nearly infinite close to obstacles
 – Has a global minimum at the goal (so no local minima)
 – Is smooth everywhere
 – Does scalar method achieve this? No; local minima.

If only life were so easy…

Numerical Potential Field

Numbers shown are for an obstacle-induced cost of ∞, and a goal-induced cost of 1 unit per grid cell (can also make it costly to approach obstacles)

To plan from any node, simply...
Completeness

• Recall our definition of complete MP
 – Is the visibility graph algorithm complete?
 – Are the potential field algorithms complete?

Recap: Design Decisions

• How is your map described? This will have an impact on the state space for your planner
 – Is it a list of polygons?
 – Is it a grid map?

• What are you trying to optimize?
 – Minimum distance? How?
 – Minimum time? How?
 – Minimum energy? How?

• What kind of search should you use?
 – Can you formulate a reasonably good heuristic?
 – If so, then A* can be a good choice

• Physical intuition can yield useful algorithms
 – Potential field methods