Navigation: Mapping

RSS Lecture 9 Wednesday 6 March 2013 Prof. Teller

Text: Siegwart and Nourbakhsh Ch. 5, 6

Dudek and Jenkin Ch. 8

Navigation Overview

- · Where am I?
 - Localization (Lecture 8)
 - Assumes perfect map, imperfect sensing
- How can I get there from here?
 - Planning (Lectures 10-12)
 - Assumes perfect map, sensing, and actuation
- What did I observe during my excursion?
 - Mapping (Today)
 - Assumes perfect localization, noisy sensing
- Can I build a map and localize in it, on-line?
 - Yes; using SLAM
 - Assumes no prior knowledge of the world

Lecture Overview

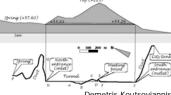
- What are maps?
- Map representations
- Fusing observations
- Uncertainty: noise and outliers
- Feature and free-space complexity

What are maps?

- Collection of elements or features at some scale of interest, and a representation of the geometric and/or topological relationships among them
- Also semantic information (metadata)
 - Segmentation, place/object naming, function, etc.
- We will focus on geometry and topology
 - But *semantics* are also critical in real-world applications!

History

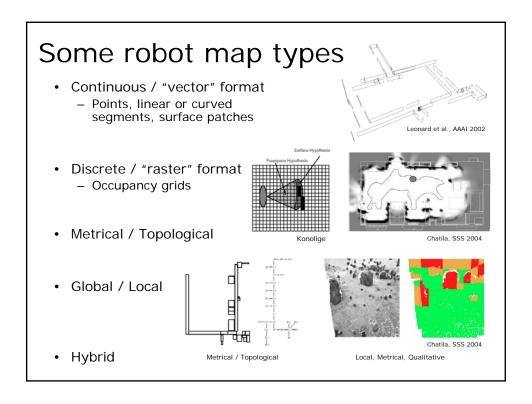
- · Early surveying, mapping methods:
 - Egyptians (c. 1400 B.C.): Nile floods, taxation
 - Plumb bobs, sighting instruments, area measurement
 - Greeks (c. 550 B.C.): Trade, warfare, engineering
 - Coastal, nautical maps for marine navigation
 - Dug Eupalinos tunnel from both ends, 1036m long!
 - Europeans (16th century onward): foundational computational methods
 - Gauss, method of least squares (1809)

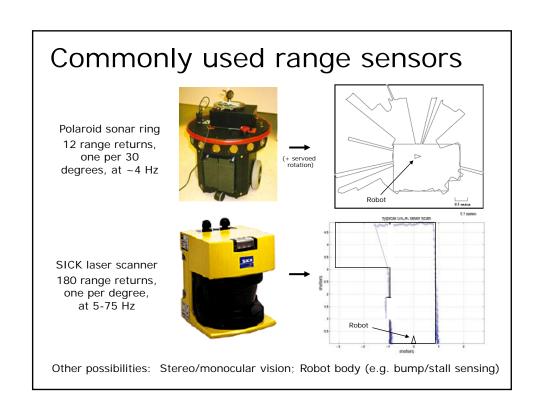


outsoviannis Triangulation of Hanover, 1820-1850

Why maps? From where?

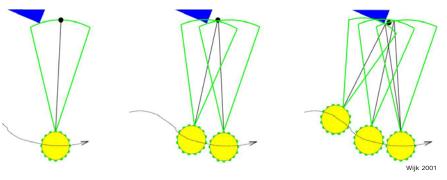
- Essential for a wide variety of human, robotic activities (localization, planning)
- Maps are highly labor-intensive to create:
 - Exploration (global coverage)
 - Measurement (local coverage)
 - Validity (correctness, error bounds)
 - Currency (freshness)
 - As-planned vs. as-built building models
 - On top of all that: metadata/semantics ...
- Map creation is an ideal robotics task!
 - Achieving a robust, sustained, large-area, fully autonomous mapping capability has been an "open" (i.e., unsolved) problem for decades





Fusing multiple returns

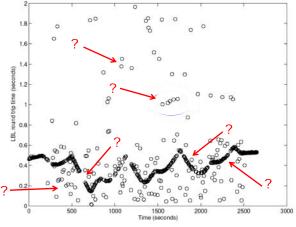
 Crucial assumption: pose estimation (e.g., odometry, dead reckoning) is accurate over short times and distances



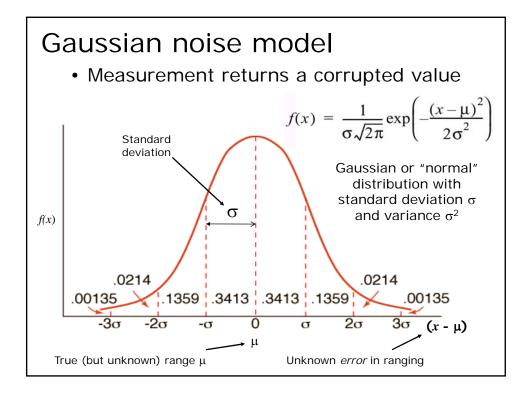
 Can then localize features using conventional triangulation (sonar beam width complicates things)

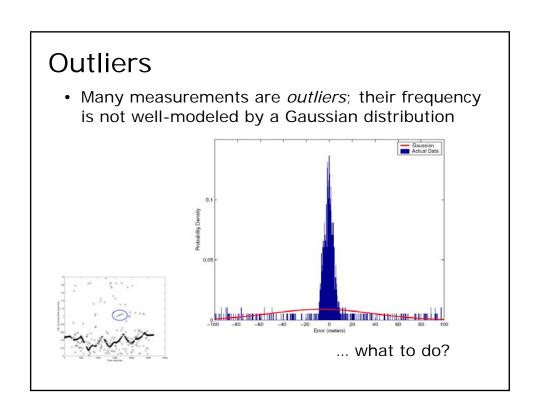
Digression: sensing challenges

• Time series of round-trip-time to one acoustic beacon for an underwater autonomous vehicle



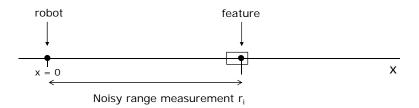
(Olson, Leonard, Teller, Robust Range-Only Beacon Localization, IEEE AUV, June 2004)





Filtering

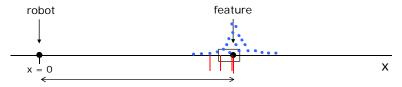
- Consider one-dimensional localization:
 - Robot measures range r(i) at ith time step
 - Ranges corrupted by Gaussian noise, outliers



- Filter measurements; combine over time
 - Incorporate each measurement as it arrives
 - Recursive (on-line) filtering (contrast batch)

Filtering with no outliers

- Suppose neither robot nor feature moves
 - What should our filtering strategy be?
 - Call x(t) our *estimate* of x after t time steps

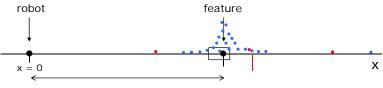


Noisy range measurement r(i)

- Compute the mean (arithmetic average)
 - x(i) = (r(1) + r(2) + ... + r(i)) / i (batch)
 - x(i) = [x(i-1) * (i-1) / i] + [r(i) / i] (on-line or "recursive")
 - ... if no outliers, no change over time, filter is optimal
- Computational complexity of each update?

Handling outliers

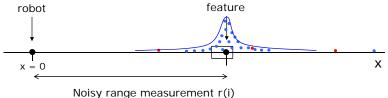
- Suppose a fraction of r(i) are wildly wrong
 - Classify r(i) as inliers or outliers •
 - How to do this?



Noisy range measurement r(i)

Modeling measurement noise

• Estimate sample variance as well as mean

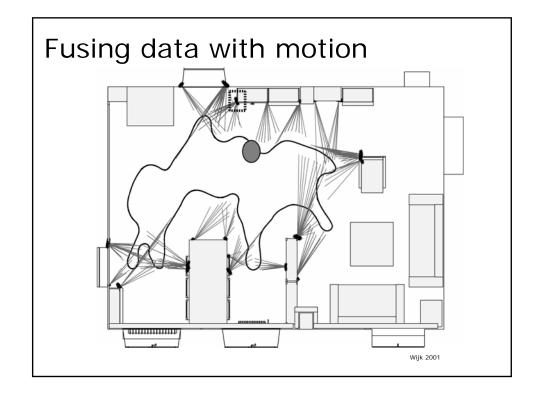


- Reject unlikely samples (e.g., p < 1%)
 - Filter only inliers, by averaging as before
- ... But where does variance come from?
 - Determine it *a priori* (e.g. from bench tests)
 - Or, estimate it on-line, in addition to mean
 - Chicken-and-egg problem (could be unlucky)
 - If "outliers" become frequent, what can you do?

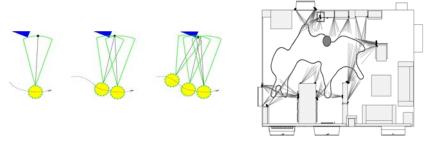
Estimating variance

- Define $\sigma^2(i)$ as variance after i steps
- Batch computation:
 - -As before, x(i) is the mean after i steps
 - -Then variance $\sigma^2(i)$ is $[\sum (r(i)-x(i))^2] / i$
- Recursive (on-line) computation:
 - -Estimate x(i) recursively as before
 - -Define $\sigma^2(1) = 0$; then for i > 1:

$$\sigma^{2}(i) = (i-1)/i * \sigma^{2}(i-1) + 1/(i-1) * (r(i) - x(i))^{2}$$



Local vs. global data fusion



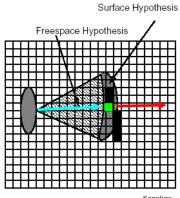
- Crucial assumption: that robot can solve strong localization (global pose estimation) throughout
- This is a very difficult problem without a map! (It's difficult even with a map or a partial map.)
- SLAM: Simultaneous Localization and Mapping
- For now, we assume localization; o/wise, need SLAM

Representation considerations

- We want our robot to be able to plan and execute high-level motions among obstacles
- What do we want from our map?
 - Consistent global, or locally metrical, coordinate system
 - Identification and localization of substantial features,
 e.g., obstacles that may hinder or damage the robot
 - All of this should be well-defined and computationally accessible (data model, data structure, API)
 - Scalability (reasonable search, access times as exploration continues, and map gets really large)
- ... Is that all we need/want from a map?

Alternative 1: Discretize

- · Occupancy grid of cells
 - Regular subdivision of region
 - Models free & occupied space
- Cells accumulate evidence of presence of obstacle surface
- Grid is updated on-line with recent measurements
- Range return from obstacle implies three grid intervals:
 - From robot to obstacle (FS)
 - At (quantized) obstacle depth
 - Beyond obstacle (from robot's point of view)



Many occupancy grid methods

• Example: sonar data, varying update rules

- White: freespace; black: obstacle; grey: unknown

Wijk 2001

Bor: Histogramic (Borenstein 1991); accumulates hits

Fuz: Fuzzy (Zadeh 1973; Ribo and Pinz 1999); with weights

TBF: Triangulation-Based Fusion (Wijk 2000); local triangulation

Bay: Bayesian (Elfes 1988); probabilistic occupancy/emptiness

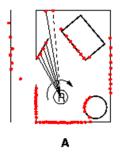
DS: Dempster-Shafer (Shafer 1976; Pagac 1996); with "ignorance"

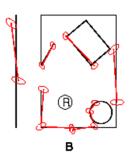
Pitfalls of occupancy grids

- Quantization error
 - Cells too large: not faithful to environment or robot task
 - Cells too small: too numerous (expensive) to process efficiently
 - Task-dependent: grid size can be simultaneously too small and too large!
- Blurring
 - Caused by pose estimation error, sensor uncertainty, grid quantization

Alternative 2: Line Features

 Piecewise linear approximation of sequence of point features (i.e., ranges)

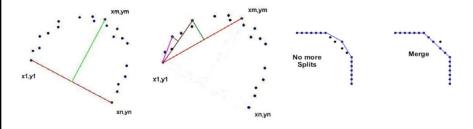




- How are individual ranges, point features grouped into useable line segments?
- How to counteract noise inherent in data?

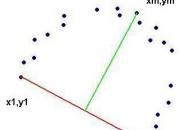
Split, Merge, Fit algorithm

- Used for *ordered sets* of laser or sonar returns
- Takes two thresholds: split distance, merge angle
- · Split phase:
 - Recursively split until (max) distance criterion is met
- Merge phase:
 - Merge adjacent segments until (min) angle criterion is met
- Fit phase (perhaps with explicit outlier handling):
 - Fit line segments to resulting (noisy) point sequences



Split phase

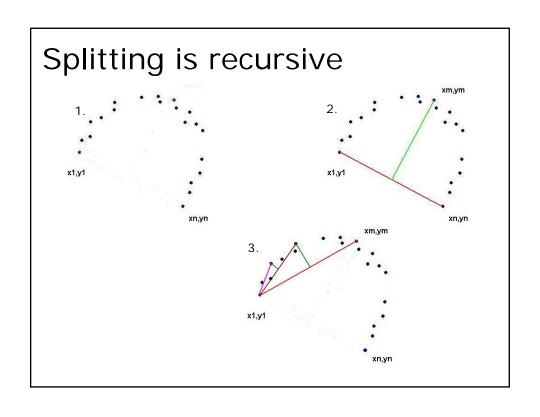
- Given points $P = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
- Find (x_m, y_m) : point with maximum distance to line $L = \{(x_1, y_1), (x_n, y_n)\}$

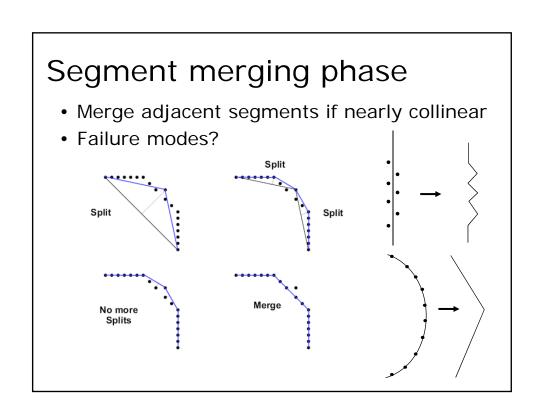


• Split into two subsets:

$$P' = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$$

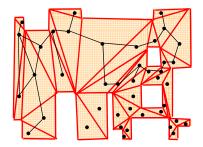
$$P'' = \{(x_m, y_m), (x_{m+1}, y_{m+1}), \dots, (x_n, y_n)\}$$





Storing extracted features

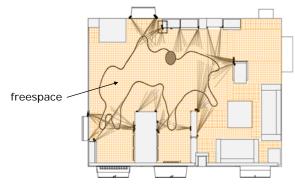
- · Store as linear list
 - Advantage: very simple. Drawbacks: ?
- Or, store in proximity data structure
 - E.g., constrained Delaunay triangulation



- CDT has many nice properties:
 - Linear size; logarithmic search; temporal coherence; maximum minimum angle; dual to Voronoi diagram; etc.

Alternative 3: Free-space Map

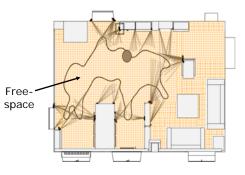
· Robot spends its time well away from obstacles

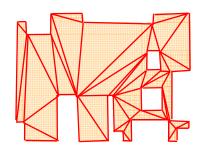


- Call this area "free-space," i.e., the region through which the robot can expect to be free to move
- The *complement* of the *union* of all *obstacles*

Free-space complexity

 It's empty, but that doesn't mean its representation is compact! What's the descriptive complexity of FS?





- Free-space is $more\ complex$ than obstacle union n
 - 2D simple polygon (no holes):
 - 2D segments:
 - 3D polyhedron:

Mapping summary

- Maps are critical to many tasks
- · Assumed localization for now
- Saw several map representations, data fusion algorithms
- Considered scaling requirements