ROS: “Robot Operating System”

6.141 / RSS Lecture 6
Monday, February 25", 2013
Sudeep Pillai
MIT EECS PhD Student

3 Problems We Must Tackle
In Developing Robot Software

(1) The world is asynchronous
Sequential programming paradigms are ill-suited

(2) Must manage significant complexity
Lots of moving parts, parameters, disturbances

(3) We want to abstract the details of specific robot hardware
Sensors, actuators

2/25/2013

Consider Lab 2:

(1) Asynchronicity
E.g., odometry goal reached while motor is spinning

(2) Complexity
Motor encoders, PID controller, motion goals, ...

(3) Hardware
Motors, encoders, wheels, wheelbase, Orcboard, ...

Goal: Develop Big Software for Robots
Problem 1: Sequential Programming

How (some of) you are used to thinking about programs:

goForward(1);

turnLeft(Math.P1/2);

Image image = camera.getimage();

double distance = computeDistanceToObject(image);
goForward(distance - 1);

(%, y) = getMyPositionFromTheEncoderCounts();

What happens if an obstacle appears while you are going forward?
What happens to the encoder data while you are turning?

What if some other module also wants the same data?

2/25/2013

Alternative to Sequential Programming: Callbacks

Callback: Function that’s called whenever data is available for processing.
Asynchronous: callback can happen at any time

Examples: Run the relevant callback function whenever:
0 Animage is read from the camera
0 The odometry sensor reports new data

void imageCallback(ImageMessage image)
/I process the latest image

void odometryCallback(OdometryMessage data)
// handle latest odometry data

void main()
initialize();
subscribe(“image_msgs”, imageCallback);
subscribe(“odometry_msgs”, odometryCallback); .

Goal: Develop Big Software for Robots
Problem 2: Complexity

How do we organize our code?

» Separate processes: Cameras, Odometry, Laser Scanner, Map
Building can all be separated out: they’ll interact through an interface

* Interfaces: Software processes (“nodes” in ROS) communicate
about shared “topics” in ROS

* Publish/Subscribe: Have each module receive only the data
(messages) it requests Topic: /camera/image

Face Detection <} mage Message

q Camera
Obstacle Detection

Image Message
Map Building

6

2/25/2013

2/25/2013

Goal: Develop Big Software for Robots
Problem 3: Abstracting Hardware

Hardware-Independent Software Device-Specific Drivers

Face Detection Image Message

Goal: Develop Complex Software for Robots
Problem 3: Abstracting Hardware

PR2 Roomba Care-O-bot 3

REUSABLE CODE!

Goal: Develop Complex Software for Robots

MIT Urban Challenge Vehicle

Summary so Far

(1) Sequentiat-Programming—
- Callbacks

(2)-Complex—multi-funetion-seftware—
- Separate processes that communicate
only through a messaging interface

(3)Hardware-dependentseftware
- Messaging interface helps avoid hardware
dependencies

- ROS : Supports this software structure for you.

10

2/25/2013

ROS : Robot “Operating” System

ROS Demo
http://youtu.be/UyLg4lfBslO

Willow

11

ROS : Robot “Operating” System

802.11x e
Ll

=7 ==/

Offboard Wireless onboard
machines bridge machines
What is ROS?

* Message Passing
» Debugging tools
TWrillow * Visualization tools
- « Software Management (compiling, packaging)
' « Libraries
* Nice abstraction for each of these elements

2/25/2013

ROS : Goals for a Meta-Operating System

It is “Hardware ==/ ==

ic” 802.11x
Agnostic: ; B Q

Offboard Wireless Onboard

machines bridge machines

* Peer-to-Peer

* Tools-based

» Multiple Languages (C++/Java/Python)

« Lightweight: Runs only at the edges of your modules
* Free & open-source

« Suitable for large-scale research

13

Outline

M Introduction
M 3 Software problems
M ROS Goals

O ROS Design €——
O Tools-Based
[0 Multiple Languages
O Lightweight
[0 Peer-to-peer
[0 Free & open-source

[0 Developing Software with ROS
[0 Debugging
[0 Visualizing
[0 Transforming Coordinate Frames

[0 Packages : ROS and External
[0 Perception
[0 Manipulation
O Navigation 1

2/25/2013

ROS Design : Conceptual Levels

& &l‘ﬂfllln i"_un (A) ROS Community: ROS Distributions, Repositories

>

& Carnegie Mellon

(B) Computation Graph: Peer-to-Peer Network of
ROS nodes (processes).

Node 2:
Map Building

Laser Scanning

Node 3:
Planning

(C) File-system level: ROS Tools for managing source code,
build instructions, and message definitions.

Tools-Based

ROS Community

/ Carnegie
Mellon

* Running ROS nodes Computation Graph
* Viewing network topology Z g

File-system level

* Tools for:

* Building ROS nodes

*Monitoring network traffic

=>Not a single monolithic program
Instead: many cooperating processes

2/25/2013

Multiple Languages

Python Node:
Laser Scanner

C++ Node :
Map Building

ROS Community

& &
AR

Willo
&k

Carnegie
Mellon

%)

“LaserData”

* ROS Implemented Natively In Each Language

* Quickly Define Messages in Language-Independent format:

File: PointCloud.msg

Header header
Points32[] pointsXYZ
int32 numPoints

Computation Graph

File-system level

Lightweight

 Encourages standalone libraries with no ROS

dependencies:
Don’t put ROS dependencies in the core of your algorithm!

*Use ROS only at the edges of your interconnected software
modules: Downstream/Upstream interface
* ROS re-uses code from a variety of projects:

*OpenCV : Computer Vision Library

« Point Cloud Library (PCL) : 3D Data Processing

» OpenRAVE : Motion Planning

ROS Community

Carnegie
Mellon

File system Level

2/25/2013

Peer-To-Peer Messagin

802.11x
V|

Offboard Wireless Onboard
machines bridge machines

» No Central Server through which all messages are routed.

* “Master” service run on 1 machine for name registration + lookup

» Messaging Types:
Topics : Asynchronous data streaming
* Parameter Server

ROS Community

Carnegie
v °n

Peer-To-Peer Messagin

Master: Lookup information, think DNS

roscore command -> starts master, parameter server, logging

Publish: Will not block until receipt, messages get
queued.

Delivery Guarantees: Specify a queue size for
publishers: If publishing too quickly, will buffer a
maximum of X messages before throwing away old
ones

Transport Mechanism: TCPROS, uses TCP/IP

Bandwidth: Consider where your data’s going, and how

ROS Community

Carnegie
v, n

2/25/2013

10

Free & Open-Source

* BSD License : Can develop commercial applications

* Drivers (Kinect and others)

» Perception, Planning, Control libraries

* MIT ROS Packages : Kinect Demos, etc

* Interfaces to other libraries: OpenCV, etc

Outline

M Introduction
M 3 Software problems
M ROS Goals

M ROS Design
M Tools-Based
M Multiple Languages
M Lightweight
M Peer-to-peer
M Free + Open Source

O Developing Software with ROS €<
[0 Debugging
[0 Visualizing
[0 Transforming Coordinate Frames

[0 Packages : ROS and External
[0 Perception
[0 Manipulation
[0 Navigation

22

2/25/2013

11

2/25/2013

Development with ROS: Debugging

» Shutdown “Object” node - re-compile - restart : won't disturb system

* Logging (VIDEO)

Laser Scanner
Object

 Playback (VIDEO)

Object
Logger Playback

Useful Debugging Tools

rostopic: Display debug information about ROS topics: publishers,
subscribers, publishing rate, and message content.

rostopic echo [topic name] = prints messages to console
rostopic list - prints active topics
... (several more commands)

rxplot : Plot data from one or more ROS topic fields using matplotlib.

rxplot /turtlel/pose/x,/turtlel/pose/y = graph data from 2 topics in 1 plot

¥y syEnn

Useful quick reference:
http://mirror.umd.edu/roswiki/attachments/Documentation/ROScheatsheet.pdf

12

2/25/2013

Useful Debugging Tools

rxgraph:
——
JUSB_camera_c mturD
/camera/im L‘““‘/lmm

kL

Q’_’“ uuD @!m tfromjpeg
scan

1yo_r
@Sla(lcmﬂuidancv qullowla:@

/VelocityFromlLaser /VelocityFromCam rosout

/DetectTargetData

25

More Useful Development Tools: roslaunch

roslaunch : Used as a startup script. Starts ROS nodes locally
and remotely via SSH, as well as setting parameters
on the parameter server

- Start Motor driver node

- Start Balanced Controller node
- Start Light sensor driver node

- More sensors...

- Start high-level navigation node

All these are encapsulated in a single roslaunch script

13

Development with ROS: Visualization

* Visualize:
* Sensor Data
» Robot Joint States
» Coordinate Frames
» Maps being built
 Debugging 3D Markers

VIDEO

Development with ROS: Transformations

* “TF” = Name of Transform package
“Tully Foote” == Person/Developer

» TF Handles transforms between coordinate
frames : space + time

« tf_echo : print updated transforms in console

Example:
rosrun tf tf_echo [reference_frame] [target_frame]

28

2/25/2013

14

Outline

M Introduction
M 3 Software problems
M ROS Goals

M ROS Design
™ Tools-Based
M Multiple Languages
M Lightweight
M Peer-to-peer
M Free + Open Source

M Developing Software with ROS
M Debugging
M Visualizing
M Transforming Coordinate Frames

[0 Packages : ROS and External <
[0 Perception
[0 Manipulation
[0 Navigation

29

Packages: Perception

» Point Cloud
Library (PCL)

* OpenCV

*Kinect / OpenNlI :

30

2/25/2013

15

Conclusion: tools to support development
of complex software for robots

* Reasons to use ROS: Handling asynchronous world
Managing complexity
Abstracting various hardware

* ROS Design: Peer-to-Peer, Multiple Languages, Lightweight
» Developing Software with ROS: Debugging, Visualizing
» Packages

More Videos

Robotic Roommates Making Pancakes

2/25/2013

16

"ROS: an open-source Robot Operating System”:
http://ai.stanford.edu/~mquigley/papers/icra2009-ros.pdf

References:

WWW.ros.org

33

2/25/2013

17

