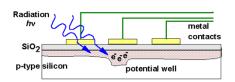
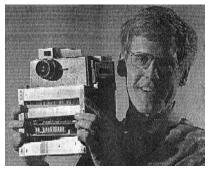
Cameras, Images, and Low-Level Robot Vision


RSS Lecture 5
Wednesday, 19 Feb 2013
Prof. Teller
Siegwart and Nourbakhsh § 4.1.8


Today's Lecture

- · Brief historical overview
 - From early cameras to digital cameras
- Low-level robot vision
 - Camera as sensor
 - Color representation
 - Object detection
 - Camera calibration
- Putting it all together
 - Visual servoing with ROS (out next Mon 2/25)

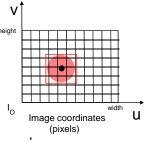
Digital Camera Precursors

- Basis: photoelectric effect (Hertz 1887; Einstein 1905)
 - As light frequency increases?
 - As light intensity increases?
- Also: advent of CCDs as shift registers (late 1960's)
- First electronic CCD stillimage camera (1975):
 - Fairchild CCD element
 - Resolution: 100 x 100 x 1-bit b&w
 ... a whopping 0.1 Megapixels!
 - Image capture time: 23 seconds, mostly writing to cassette tape
 - And another 23 seconds to read out to a nearby TV for display
 - Total weight: ~8.5 pounds

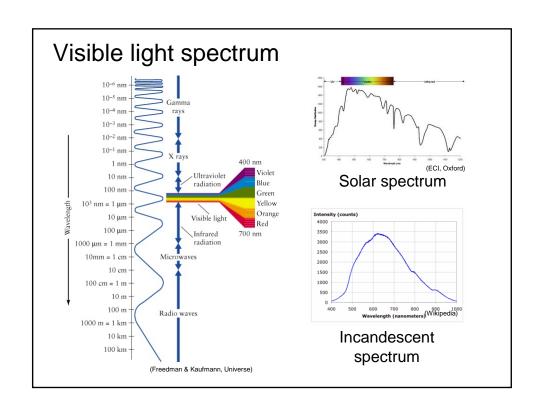
Kodak, c. 1975

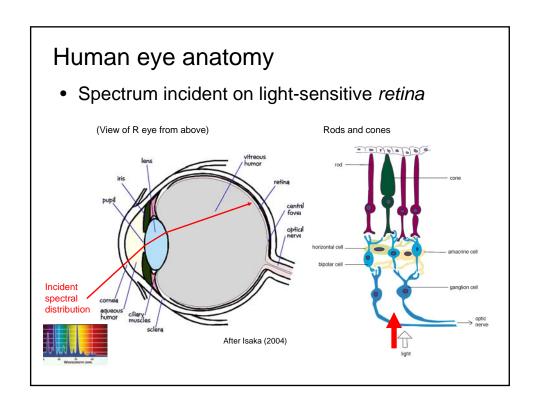
Miniaturization, price point

- In 2013, twenty dollars buys a camera with:
 - 1280 x 768 pixel resolution at 30Hz
 - 24-bit RGB pixels (8 bits per channel)
 - Automatic gain control, white balancing
 - On-chip lossy compression algorithms
 - Uncompressed image capture if desired
 - Integrated microphone, USB 2 interface
 - Limitations
 - Narrow dynamic range
 - Narrow FOV (field of view)
 - · Fixed spatial resolution
 - No actuation or active vision capabilities


Logitech C270

Digital image contents


- Why are pixels represented as "RGB"?
 - Is world made of red, green, and blue "stuff"?



 ... Answer requires two brief digressions about human vision & cameras as sensors

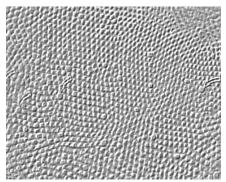
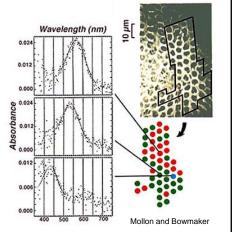
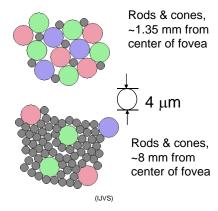
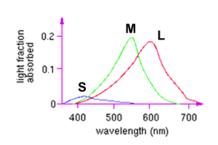


Image as measurement • What does eye/camera actually observe? ... the product of illumination spectrum with absorption or reflection spectrum! = (at each image point) X Total Augustian (Augustian (Augustia


Foveal cone distribution

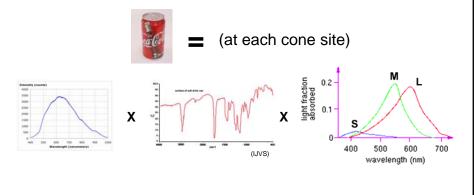
• Densely packed in fovea, less so in periphery


Visual discrimination of 1 minute of arc [corresponds roughly to] the center-to-center spacing (3 μ m) of the cones of the central mosaic in the foveola (retina.umh.es).

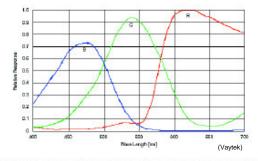

What does "1 minute of arc" mean?

Cone sensitivities

 Three cone types (S, M, and L) are roughly blue, green, and red sensors, respectively. Their peak sensitivities occur at ~430nm, 560nm, and 610nm for an "average" human.



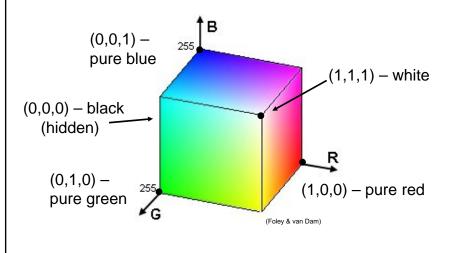
Cone sensitivities as a function of wavelength


Color perception

 The cones form a spectral "basis" for visible light; incident spectral distribution differentially excites S,M,L cones, leading to color vision

Origin of RGB CCD sensors

 So, in a concrete sense, CCD chips are designed as RGB sensors in order to emulate the human visual system

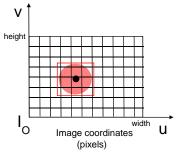


CCD with Bayer Filter, Relative Spectral Response Curve

... End of digressions

RGB Color Model

• Think of R, G, B as a kind of "color orthobasis"



Object detection

 Suppose we want to detect an object (e.g., a red ball) in camera's field of view

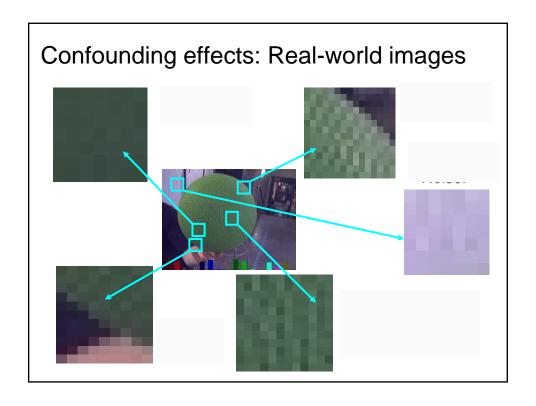
• We simply need to identify all pixels of some specified color in the image ... right?

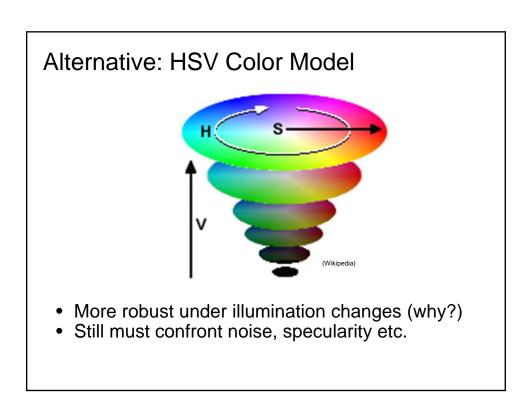
Naïve object detector

```
set objectPixels = Ø; // empty set

// look for red ball in image
for i = 0 to width-1
    for j = 0 to height-1
        if ( isRed( pixel[i, j] ) ) // classifier
        objectPixels U= {(i, j)};

if ( isBall ( objectPixels ) ) // detector
    // do something in response to ball
```


Pixel classification


```
Boolean isRed (pixel p) {

if ( p.red >= 0.8 // where do 0.8,
    && p.green < 0.2 // 0.2 come from?
    && p.blue < 0.2)

return true;
else
return false;
}

// Will this do what we want?
```



```
Naïve object detection

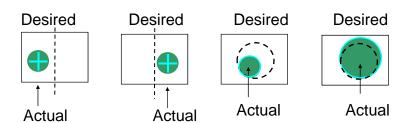
Boolean isBall ( set s ) {
    if ( |s| > 0.1 * W * H ) // area threshold
        return true;
    else
        return false;
    }

// how might this fail?
```


```
(Slightly) improved detection

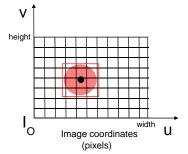
Boolean isBall ( set s ) {
    if ( |s| > 0.1 * W * H // area threshold
        && s is "ball-shaped" ) {
        return true;
        else
        return false;
    }

// how might this fail?
```


Doing something useful

- Report *presence* of ball in image
 - As function return, message dispatch, etc.
- Estimate attributes of (presumed) object
 - Color
 - Size
 - -... how?
 - Centroid
 - ... how?

How / when might these estimates be poor?


Size, centroid estimation

- · Can use estimators as inputs to motion controller!
- Suppose we want a 1-meter frontal standoff
 - How do we compute desired size in image?
 - Instance of camera calibration; more examples to come later in term

Application: Visual Servoing (Lab 4)

- Write a "blob detector" in integer (u, v) pixel coordinates
 - Transform pixels from (r,g,b) to chrominance, luminance
 - Given a target hue (e.g., red) and error tolerance, find significant connected components of pixels with that hue
 - Estimate the area and centroid of the largest detected blob
- We will supply several "fiducial objects" (colored balls)
- Issue translation, rotation control so that robot "servos" to the ball, facing it frontally at desired standoff distance

What's Next in RSS:

- This afternoon's Lab
 - Labture for Lab 3 (Braitenberg behaviors) 305-320pm
 - Briefings for Lab 2 in alcove, teams in random order
- Friday 2/22
 - CDE due at 1pm! (Turnin instructions posted 2/19)
 - Forum: Briefings and Collaboration revisited
- Monday 2/25
 - Lecture: ROS (Robot Operating System)
 - Lab: Briefings for Lab 3
 - Labture for Lab 4 (Visual Servoing)
- Wednesday 2/27 Lecture
 - System Engineering and Test