

Completing a rotation

- Reverse current direction
- Commutator (copper) and brushes (not shown)
- Blue coil is the one in contact with + terminal

Example	mot	or data	she	et (d
GM9236S025		1 and 1	-	
Lo-Cog [®] DC Servo Gearm	otor	-		
Assembly Dete	Cumb al	11-34-	N	
Assembly Data	Symbol	Units	Va	
No.L and Sneed	C Su	rom (rad/s)	71	(7.4)
Continuous Torque (Max.) ¹	JNL To	oz.in (N-m)	480	(3.4E+00)
Peak Torque (Stall) ²	Terr	oz-in (N-m)	2585	(1.8E+01)
Weight	W.	07 (0)	23.7	(671)
Motor Data	11M	02 (g)	20.7	(0/1)
Torque Constant	K.	oz-in/A (N-m/A)	3.25	(2 29E-02)
Back-EMF Constant	Ke	V/krpm (V/rad/s)	2.40	(2.29E-02)
Resistance	R ₇	Ω	0	.71
Inductance	L	mH	0	.66
No-Load Currient	IN	A	0	.33
Peak Current (Stall) ²	lp.	A	1	6.9
Motor Constant	Км	oz-in/√W (N-m/√W)	4.11	(2.90E-02)
Friction Torque	Tr	oz-in (N-m)	0.80	(5.6E-03)
Rotor Inertia	JM	oz-in-s2 (kg-m2)	1.0E-03	(7.1E-06)
Electrical Time Constant	τε	ms	1	.06
Mechanical Time Constant	τ _M	ms	ł	8.5
Viscous Damping	D	oz-in/krpm (N-m-s)	0.053	(3.5E-06)
Damping Constant	Kp	oz-in/krpm (N-m-s)	12.5	(8.5E-04)
Maximum Winding Temperature	θ _{MAX}	°F (°C)	311	(155)
Thermal Impedance	R _{TH}	°F/watt (°C/watt)	56.3	(13.5)
Thermal Time Constant	τ _{TH}	min	1	3.5
Gearbox Data				
Reduction Ratio			6	5.5
Efficiency ³			0	.80
Maximum Allowable Torque		oz-in (N-m)	500	(3.53)
				Pittman

Туре:	Pluses:	Minuses:	Best For:
DC Motor	Common Wide variety of sizes Most powerful Easy to interface Must for large robots	Too fast (needs gearbox) High current (usually) Expensive PWM is complex	Large robots
Hobby Servo	All in one package Variety; cheap; easy to mount and interface Medium power required	Low weight capability Little speed control	Small, legged robots
Stepper Motor	Precise speed control Great variety Good indoor robot speed Cheap, easy to interface	Heavy for output power High current Bulky / harder to mount Low weight capability, low power Complex to control	Line followers, maze solvers

Supplementary Reading

- Theoretical
 - Foundations of Electric Power, J.R. Cogdell
 - <u>Electric Motors and their Controls: An Introduction</u>, Tak Kenjo
- Practical
 - Building Robot Drive Trains,
 D. Clark and M. Owings
 - <u>Mobile Robots: Inspiration to Implementation</u>, J.L. Jones, B. Seiger, A.M. Flynn

Recap and What's Next

Today:

Some practical aspects of DC motors
 Operation, sizing, applications

In Lab:

- Brief Forum make-up from snow day
- Continued work on Lab 2

Forum (this Friday):

- Expectations for briefings, collaboration
 - Also, CDE assigned; due Friday 2/22

Next Lecture (**Tuesday** at 1pm – virtual Monday):

Sensors