
RSS webmaster

Subversion is a powerful, open-source version control system favored by the RSS course staff for use by RSS teams doing shared code
development. This guide is a primer to the use of Subversion within RSS. Subversion provides a simple command set with which you can:

Check out a local, working copy of code from a shared repository;
Track the status of your local copy with respect to the repository;
Commit your local changes back into the repository;
Update your local copy to reflect changes committed by others;
Merge sources and resolve conflicts as needed; and
Revert to an earlier, stable version if anything goes awry.

The on-line version of this document (posted in the Labs/ area of the RSS home page) links to documentation on the Subversion web site. Many
of the example Subversion command lines shown below are derived from that site.

Getting Started

As alluded to in lecture and lab, Subversion supports a source control model in which multiple users share read/write access to a source
repository, which represents the group’s consensus version of its collective code-base or source tree. Users modify the repository only through a
well-defined set of actions implemented by the program svn, which “manages” files on the user’s behalf. A user wishing to add or modify code
in the repository must first retrieve or “check out” a local working copy of the repository. S/he then edits the local version and tests it locally.
When the user’s local copy is once again functional (and hopefully, improved), the user can “commit” his/her changes to the repository, at
which time the modified code becomes visible to other users. All users can monitor the status of the repository, and the state of their own local
files with respect to their (presumably stable) counterparts there. Finally, users can “update” and “merge” their local copies to incorporate
changes committed by others to the repository, “resolve” conflicts between their own edits and changes made by others, and “revert” to earlier
committed versions if necessary.

Checking Out Your Group Repository

First, you may wish to add a line like this to your shell's run-time command file (e.g. ~/.bashrc) to reflect your choice of editor (this just controls
which editor gets invoked when svn needs you to edit a file or enter a commit message, as described below; your account in the hangar will use
emacs here by default):

export SVN_EDITOR=vim # or other text editor of your choice

If you do so, then update your active shell to reflect these changes (either by cutting and pasting the lines above to the shell and executing them,
or by exiting your shell and starting a new one).

Now cd into your home director:

cd

And check out a copy of your group's source tree, where N is your one-digit group number and user is your rss username

svn checkout --username=rss-student https://svn.csail.mit.edu/rss-2013/groupN ~/RSS-I-group

where X is your team/group number(your TA should have the password for your group).

Editing and Committing Changes

Change directories down into your local source tree. Now you can begin collaborative code development with your teammates. Each of you
should use the editor of your choice. We’ve provided one display, keyboard and mouse per workstation, but if you bring a laptop into the lab,
you can ssh in and work simultaneously with your teammates.

Once you have edited, compiled, tested, and documented one or more files, you will use “svn commit” to propagate your local revisions back
into the repository, incrementing the version number of the repository file as a side-effect. You can do this on a per-file basis (recommended for
beginners) using:

svn commit filename

Or you can simply rely on Subversion to figure out exactly what has changed in the sub-tree rooted at the current directory, and commit it:

svn commit

For each commit action, Subversion will bring up an editor and ask you to enter a brief comment describing the purpose of the commit. These
comments will be displayed to you and your teammates when you ask Subversion for the edit history of a file, and are among the most valuable
metadata (along with filenames and modification dates) that Subversion associates with your code. Even if you feel that the changes you just
made are completely obvious in their purpose and function, they may not be obvious to your teammates or the staff, and frankly they may not
be obvious to you either after a few hours have passed. So, type in a brief, meaningful comment whenever Subversion asks you to.

Typically the commit will occur successfully. But if someone else has committed changes since your most recent checkout or update, you’ll
have to merge their changes with yours, resolving conflicts as needed before Subversion allows the commit (see below).

Adding and Removing Files

Suppose you decide to design a new Java class, and create a file MyClass.java to implement it. Subversion’s data model, in which each
user edits only a local copy of the source tree, has some implications that take a bit of getting used to. For example, there’s no such thing as
adding a file directly to the repository. Instead, the user creates the file locally (typically with a text editor), then adds it to the local tree, then
commits it to the repository:

emacs MyClass.java # create local copy
svn add MyClass.java # schedule file for addition to repository
svn commit # propagate file MyClass.java to repository

Similarly, to delete a file, a user must first delete the local copy of the file, then inform Subversion that it should be deleted from the repository
as well (otherwise, Subversion will simply replace the file as part of the next update):

 rm MyClass.java # delete local copy

svn delete MyClass.java # schedule file for removal from repository
 # MyClass.java must not exist in current directory
svn commit # propagate deletion of MyClass.java to repository

Use svn add and svn delete wisely. Don’t add temporary files (editor backup files, .o files from compilation, etc.). Don’t delete files
added by another user without first talking to that user. You can use svn revert (see below) to correct these sorts of errors before they are
committed.

Checking Status, and Updating to Incorporate Changes Made by Others

In a source tree with dozens or hundreds of files shared by even a few people, it will naturally occur that two or more people change the same
file at about the same time. This happens even when teammates try hard to keep each other informed about the edits they plan to make. To
facilitate communication about overlapping edits, Subversion provides a mechanism called “svn status” that compares a local file or subtree to
its counterpart in the repository. As with commit, status can be requested for a single file:

svn status filename

Or, status can be requested for the sub-tree rooted at the user’s current directory:

svn status

In either case, svn produces a listing of every file that differs from its repository counterpart, and for each file a one-letter code describing the
difference. There are many one-letter codes, but the most important for our purposes are:

M foo (user’s copy of foo has been locally modified)
C foo (file has conflicts from an update)
A foo (file is scheduled for addition to repository)
D foo (file is scheduled for deletion from repository)
L foo (svn has “locked” foo; at this moment, it is managing foo for another user)
? foo.o (foo.o is not part of the repository; svn does not manage it)

Locked files can be a mysterious part of version control. Locks usually clear after a few seconds as the (other user’s) locking operation
completes. Occasionally, though, locks persist indefinitely. This can happen due to network disruptions or (more likely) Subversion terminating
prematurely on the client or server due to an error condition of some kind. If you see a lock that lasts more than a minute, call an RSS staff
member over or email rss-help for assistance.

Merging, and Resolving Conflicts with, Changes Made by Others

Typically, team members communicate in order to avoid simultaneous revision of the same file. However, in some cases (for example when
two people add methods to the same class), overlapping changes are hard to avoid. This is not a problem for the first person to commit her
changes; Subversion simply accepts the commit with no errors or warnings, as usual. However, the second person to attempt a commit will find
that her local copy is not up to date with the repository version; this person will be required to merge any conflicts before committing.
Subversion provides several tools to support file merging:

svn log filename # show history of file over time
svn status filename # show current file status, see above
svn status –u filename # show status, and predict conflicts on update
svn diff filename # diffs file with its committed counterpart

It is good practice to invoke svn status frequently, especially before committing your own changes, to see what conflicts (if any) your
local changes may cause with material already committed to the repository. Again, if others have modified overlapping areas of the
repository, Subversion requires that you incorporate or “merge” their changes into your local tree before committing your own changes:

svn update

The update command will print a one-letter code for each updated file: “U” (file updated from repository), “G” (file merged with
non-overlapping updates from repository), or “C” (conflict found between your local edits and the repository version of the file, typically
because someone else has committed changes in the same region of the same file).

Subversion inserts marker lines (typically <<<<<, =====, and >>>>>) into conflicting files to demarcate conflict regions. You will have to

inspect and reconcile these regions in your editor. Subversion tries to help you by placing files with the same base name as the conflicted file,
but suffixes “.mine,” ”.rNEWREV”, and “.rOLDREV”, in your working directory, which represent your pre-update local copy, the
repository’s pre-checkout committed copy, and the repository’s current committed copy, respectively. Note that you’ll almost always want to
remove the conflict demarcation lines as part of your resolution process, since the presence of such lines in program text (as opposed to within
comments) will prevent compilation. Once you have resolved the conflicts to your satisfaction, remove these temporary files using rm and
invoke:

svn resolved filename

to inform Subversion that you have resolved the conflict. Subversion will now allow the file to be committed.

For advanced Subversion users, “svn merge” can patch specified committed versions into a working version.

Reverting to an Earlier Version

Sometimes, you’ll realize that you’ve made a mistake: pursued an ill-advised implementation strategy, accidentally edited the wrong file, added
a temporary file, or deleted source files that you actually cared about, for example. If you wish to reverse these changes before you have
committed them, Subversion already provides a safety net for such cases, called “svn revert”. This command requires at least one
argument: either a list of one or more filenames, or a --recursive flag and location of an entire directory to revert:

svn revert filename # revert a single file
svn revert --recursive . # revert entire working directory

The revert action is comprehensive; in addition to undoing any local edits you have made, it “unschedules” any file additions or deletions
you have scheduled (but not yet committed).

You can also revert to earlier versions across commit boundaries, using “svn update --revision <version>”, where the version
specifier can be an absolute version number, a relative version number, or a date (or date/time) specifier:

svn update --revision PREV foo # decrement foo’s working revision
svn update --revision 1729 # updates existing working copy to r1729

svn update --revision {2005-02-17} # update to 12:00:00am, start of February 17th
svn update --revision {15:30} # update to 2:30pm today
svn update --revision {"2005-02-17 15:30"} # update to 2:30pm on February 17th

If you would rather not modify your working copy, create a directory elsewhere and use the “svn checkout” form of the commands above
to check out a fresh local copy to that directory.

Be very careful with revert and update: they can wipe out hours of hard work in an instant. Remember that revert and update actions may
have irreversible effects on your (previous) working copies.

Advanced Subversion Capabilities

Subversion is a distributed file-sharing and file-versioning system with extensive local caching. Its actions often involve the network, take a
significant amount of time to complete, and can be interrupted or otherwise fail. For these (hopefully infrequent) failure cases, Subversion
provides a “cleanup” command that uses logs to put your working copy back into a consistent state. (Take 6.033 for more about logs and
transaction consistency.)

Subversion has many other powerful capabilities. It can be configured to email all team members whenever any team member commits a
change to the repository. It supports branches and tags, general metadata association with files, and a host of other complex functions whose
descriptions are beyond the scope of this document. Refer to the on-line reference “Version Control with Subversion” (Collins-Sussman,

Fitzpatrick, and Pilato) for comprehensive documentation.

General Tips

This section collects a few words of wisdom gained through the RSS staff’s experience with a variety of source control systems. These are
meant to be read with care, along with the admonitions mixed in to the descriptions of Subversion functionality above. We hope that you’ll
heed these tips in your own software development. But you’ll probably learn these lessons the hard way, like we did.

Version control systems are meant to enhance teamwork and communication, not replace it. Don’t stop talking to your teammates just
because you’re using Subversion. If anything, the sharing model imposed by the system should prompt you to talk (and think!) more with your
teammates, about exactly who is going to make what changes to your source, when, and how. More talk equals less stepping on each others’
toes with unintended changes and consequent unpleasant merges and conflicts. Communicate with your teammates.

Ignore the “.svn” subdirectory and its contents. Every directory checked out with svn contains one, which Subversion uses to hold local
versioning information and a partial cache of the repository. Do not modify or delete anything in this directory. (If you do, it will end in
tears.)

Check status and update frequently, especially for files you are about to edit. Checking status tells you when your local copy is out of date,
i.e. when someone else has committed changes to the repository since your most recent checkout or update. Doing an update brings you up to
date by incorporating those changes into your local copy. There’s no sense charging ahead to edit anything until you’ve got your teammates’
most recent versions. If you do, you’re just setting yourself up for a possibly painful merge and/or conflict task later, whenever you decide to
commit your own changes.

Exit your editor buffers when updating, at least until you become completely comfortable with your editor and Subversion’s repository
model. Otherwise you can get into a quite confusing situation in which your editor overwrites new, good code from your teammates with your
own older, not-as-good code. Some editors even do this automatically (example: “emacs auto-save”), thinking they are doing you a favor.
(They’re not.)

Commit stable versions often – typically whenever you make a substantive functional change. Each commit provides a potential “island of
stability,” amongst a sea of changes, to which you and your teammates can revert in case of problems. Remember, if you work for eight hours
and commit only once at the end, then the only reversion point available to you will be to the state you were in before all of your work was
started. Don’t be afraid to commit often. Don’t worry; the svn tools can handle it. (But be reasonable; committing every time you add a
comment or some whitespace to your code is going too far.)

RSS webmaster

