
Massachusetts Institute of Technology

Robotics: Science and Systems I
Lab 3: Light Sensors and Braitenberg Behaviors

Distributed: Wednesday 2/20/2013 at 3pm
Wiki Materials and Briefings Due: Monday 2/25/2013 at 3pm

Objectives and Lab Overview

Your objective in this lab is to understand how to integrate and use sensors on your robots. You will add two light
sensors to your robot. You will mount the sensors and calibrate them. Then you will use the sensors to control
the robot’s movement according to the light levels it senses from them in accordance with the historic Braitenberg
behaviors.

Self-Assessment: On your team wiki page (see § 1 below), before you start the lab, each team member should
rate his or her proficiency in each listed area as of the start of this lab on the given skill point chart for Lab 2 in the
”Beginning of Lab” column (1=Not at all proficient; 2=slightly proficient; 3=reasonably proficient; 4=very proficient;
5=expert):

• Mechanics: How proficient are you at mechanical assembly?

• Electronics: How proficient are you at soldering and working with electronics?

• Version Control: How comfortable are you using a Version Control system?

• Java Coding: How proficient are you at programming in Java?

• Motion Control: How proficient are you at designing and implementing reactive robot behaviors?

When filling this out, be creative, and be honest – your answers will help you progress through the material (knowing
your strengths and weaknesses is crucial to effective teamwork), and will aid the class staff in providing support for
your work in the class. While completing the self-assessment at the start and end of each lab is required, your answers
to the self-assessments will not affect your lab or course grade.
Additionally, each team member should update his or her saved progress on their wiki areas, reflecting all time spent
on the lab. Make both of these actions a habit (allocating skill points and updating time spent in lab), so the staff will
have a better handle on how best to support your team as you progress through the labs and the challenge itself.

To start the lab, you should have:

• Your robot from the previous lab

• Two light sensors, wire, connectors, heat shrink tubing, a heat gun (shared), a soldering iron and solder

• A photocopied handout on Braitenberg vehicles from the book entitled ”Vehicles: Experiments in Synthetic
Psychology” by Valentino Braitenberg.

Before proceeding, check the wiki and lab handouts page for any errata and/or additional lab materials.

Physical Units

We remind you to use MKS units (meters, kilograms, seconds, radians, watts, etc.) throughout the course and this lab.
In particular, this means that whenever you state a physical quantity, you must state its units. Also show units in your
intermediate calculations.

1



1 Establish Your Wiki Area for this Lab

Each RSS Lab requires a team-authored set of wiki materials. Create space for these in your team’s Lab Materials
area. Title the page with the lab name and use the Wiki formatting syntax to post and organize any question responses,
images, video clips etc.
As you work through the lab, add text and upload screenshots and photos to the wiki. In particular, be sure that every
italicized question and deliverable throughout the lab is answered on the wiki.

2 Incorporating the Sensors

Recall from the lecture on sensors that a light-detecting sensor is incorporated using a voltage divider. The voltage at
the analog input pin of your µORCboard is determined by the voltage between the resistor and the photocell.

Figure 1: Wiring diagram of the light sensor.

1. Consult the wiring of the light sensor on the exemplar, and Figure 1.

Write down the formula for the voltage divider which gives Vout in terms of Vin = 5V, the photocell resistance
Rphoto, and the resistor R1. If your photocell has a resistance of 180 Ohms in bright light and 200k Ohms in the
shade, what is the voltage range of your light sensor as a function of R1?

2. Suppose your photocell has an average resistance around 47k Ohm in ambient light. You can measure the real
range of resistance of your photo cell by connecting it to your multimeter set to the ohm-meter setting.

What is a desirable value for the resistor?

3. Suppose you use a resistor an order of magnitude more resistive than your answer above.

What will be the effect? What can you do to compensate?

4. Using Figure 1 and the exemplar robot as guides, build and mount two light sensors to your robot’s frame. For
each sensor, connect the 3-pin female header to either channel 0 or 1 of the ADC ports on the µORCboard. Be
careful to observe the polarity of the connector as well as the male header on the µORCBoard. If you have
questions, consult the exemplar robot.

5. Use ORCspy to examine the sensor measurements. What range of values do you see during an interval of ambient
light? What range of values do you observe as you shine a light source in front of a sensor and then close the
interval (with roughly discrete steps in distance) between the light source and the sensor? Cover the sensor with
your palm. What range of values do you observe now? Record these values on the wiki. Are they linear?

2



Deliverables: Add a picture of your completed, mounted sensors to the wiki. Answer the questions above. Include a
description of how you mounted the sensors. Tell us what was easy and what was difficult.

3 Populate your Working Area with the Scaffolding Code

Follow these steps to get the scaffolding code for the lab (refer to the Subversion source code control handout as
needed):

1. Wherever you choose to develop your code, update the scaffolding code in your working copy of the RSS-I-pub
repository.

(a) Move to the RSS-I-pub directory:
cd ˜/RSS-I-pub

(b) Update your working copy of the RSS-I-pub repository:
svn update

2. Add the newly updated Braitenberg code to your group’s repository by executing the following four steps:

(a) Go to your working copy of your group’s repository:
cd ˜/RSS-I-group

(b) Copy the Braitenberg source into your working copy of your group’s repository, using the svn “export” utility:
svn export ˜/RSS-I-pub/labs/Braitenberg/

(c) Then use svn add to put the Braitenberg directory and its contents under svn control:
svn add Braitenberg

(d) Finally, commit the changes in your local working copy of the repository to your group’s repository on the
svn server:

svn commit -m "Your commit comment here"

3. Import the new Braitenberg files into Eclipse
(a) Start Eclipse and from the menu bar select File→ New→ Project. In the New Project dialog that appears,

select “Java Project from Existing Ant Buildfile” and click the Next button.
(b) In the New Java Project dialog, click the “Browse. . . ” button beside the “Ant buildfile” text box. Browse to

/home/rss-student/RSS-I-group/Braitenberg and select the “build.xml” file.
(c) Back in the New Java Project dialog, change the name of your project to “lab3” and choose

"javac" task found in target "compile [default]" as the javac declaration used to de-
fined the project. Also, be sure to check the Link to the Buildfile in the file system
checkbox. When you’re done, click the “Finish” button.

(d) If, after importing all of the source files, Eclipse complains about RobotBase not being found, you need
to tell Eclipse to add motorControl.jar file to its build path. From the context menu that results from Right-
clicking on your Braitenberg project in the Project Explorer view, select Build Path→ Add External Archives.
Then select “motorControl.jar” in the Braitenberg directory.

4. Select Run |Run Configurations... Select “Java Application” from the list, click the new icon, and change the name
to “lab3”. Browse for the “Project” and select “lab3”. Set the “Main class” to Braitenberg.LightSensors.

5. Click Apply and then Run.

6. The scaffolding files are designed to use the published solution code from the Motor Control lab. If you would
rather use your own motor driver code, change all occurrences of import MotorControlSolution.*;
in Behavior.java, LightSensors.java, and Photocell.java to import MotorControl.*;. Then, in the project
Properties dialog, (accessed from the context menu that results from Right-clicking on your Braitenberg project
in the Project Explorer view and selecting Properties), select “Java Build Path”, activate the “Projects” tab, click
the “Add” button, then select your MotorControl project.

3



4 Calibrating the Sensors

It is important to calibrate sensors relative to ambient light because ambient light affects your sensor readings. Ambient
light can vary from room to room, or even in the same room at different times of the day. Ideally, you would like for
your robot to adapt to ambient light.
To keep things simple, in this lab your robot should run a calibration method that explicitly senses the ambient light
upon startup and sets an offset term and a linear scale term. Later, another method will use these stored values to return
a calibrated reading from the light sensors at run-time.

1. Fill in the calibrate() method in Photocell.java to set the instance variables offset and scale.
Have your method take multiple sensor measurements of the ambient light over a duration of at least 5 seconds
(the frequency is up to you). A method named getRawValue() is already provided in Photocell.java
which returns the raw value of the sensor.

Assume that 5 volts is always the maximum reading, and that it corresponds to saturation of your sensor. Assume
that the light sensor readings scale linearly with the light level. Make your calibrated values range from 0 to 100 .
That is, 0 should indicate ambient light and 100 should indicate saturation (bright light).

Based on the sensor behavior you saw in Part 1 via the ORCspy, is linear scaling sufficient? What other scaling
could be used to improve the utility of information from the sensors?

2. Fill in the getValue() method in Photocell.java which returns the calibrated value of the light sensor,
based on its current reading, offset, and scale.

Deliverables: Answer the question regarding sufficiency of linear scaling.

5 Searching for a Light Source

In this part of the lab you will use the light sensors to guide the motion of your robot toward a fixed (i.e. non-moving)
light source. Ultimately, your robot will search for a light source, head toward it, and stop and beep once it arrives.
Hint 1: Use a bright light source, and hold it at the same height as the light sensors. A bare 75W incandescent light
bulb works well, but is of course hot – be careful not to touch it or let it touch your robot.
Hint 2: During the daytime, sunlight will enter the room through the windows. How can you make your calibration
procedure reasonably robust even when some sunlight is present?

1. In Behavior.java, implement search() to find the direction of a bright light source (note that a conve-
nience Behavior.setDesiredAngularVelocity() method has been provided). It is up to you to define
what is considered a “bright” light. The search() function is called repeatedly (from Behavior.go()) until
it returns true. How far away can the light source be for the robot to detect it in your implementation? If the
robot does not see any light at the start (that is, it is not directly pointed a the light source), it should search for it
by rotating. What will your robot do when there are two light sources? Or when a single light source is equally
spaced from both light sensors? Test your algorithm for three different distances and three different orientations
of the light source; describe and sketch the result of each experiment (you can upload sketches to the wiki by
photographing them with your PDA or the RSS camera).

2. Implement Behavior.goToLight() which is invoked whenever search() returns true. After the initial
search(), the robot should not make any more turns. Make the speed of the robot decrease in proportion to its
distance from the light source, and beep (a beep() method is provided in Behavior.java) when the robot is
close to the light source (again, by your definition).

Deliverables: Document your methods and prepare a written explanation of the algorithms for the locate and tracking
methods. Include your test data (screen shots of runs work well) and answers to the questions above.

4



6 Braitenberg Behaviors

But emotions don’t seem like a very useful simulation for a robot... I don’t want my toaster or my vacuum cleaner
appearing emotional.
— Detective Spooner, I, Robot
In his book entitled Vehicles: Experiments in Synthetic Psychology, Valentino Braitenberg describes a series of thought
experiments in which vehicles with simple internal structure behave in unexpected ways. He experimented with
simple control mechanisms that generate complex behaviors with psychological interpretations such as aggression,
love, foresight, and even optimism. All these behaviors have very simple internal representation and it is surprising
that the resulting perceived response of the robot can have such complex manifestation. In his book, Braitenberg gives
these machines as evidence for the law of uphill analysis and downhill invention which refers to how it is more difficult
to guess internal structure of a creature from the observation of behavior than it is to create the structure that gives the
behavior.
The simplest Braitenberg vehicle is equipped with one sensor and one motor. This is described in the Braitenberg
handout. We shall skip implementing this vehicle but it is worth noting the vehicle responds linearly to sensory input.
Your next tasks involve implementing several Braitenberg behaviors.

1. Implement Behavior.vehicle2a() and invoke it from the appropriate spot in Behavior.go(). Connect
the behavior of each light sensor to the motor on the same side. When the sensor gets closer to a source, its
corresponding motors moves more quickly. As the sensor moves away from a light source, the corresponding
motor slows down. This is termed excitatory response. Test your program and record how your robot responds to
fixed light sources in 3 different locations, as well as its response to a moving light source. What emotion does
your robot’s behavior most resemble?

2. Implement Behavior.vehicle2b(). Connect the behavior sensor to the motor on the opposite side of the
robot. Write your prediction on what will happen under different light source positions and test the robot’s
response in 3 different example settings, plus in a setting with a moving light source. How do your predictions
match the robot’s response? What emotion does your robot’s behavior most resemble?

3. Implement Behavior.vehicle3a() and Behavior.vehicle3b(). You can implement Vehicle 3a by
generalizing your code for Vehicle 2a, making the connections inhibitory rather than excitatory. That is, when
the sensor gets closer to a source its corresponding motor should slow down, and when the sensor gets farther
from a source its corresponding motor should speed up. Repeat your predictions and experiments recording them.
Likewise, for Vehicle 3b, generalize your code for Vehicle 2b, making the connections inhibitory rather than
excitatory. Write your prediction on what will happen under different light source positions and test the robot’s
response in 3 different example settings, plus in a setting with a moving light source. How do your predictions
match the robot’s response? What is the difference between the two vehicles’ behavior under the same light source
conditions? What emotions best describe your robot’s behaviors?

4. Design and implement your own vehicle behavior. For example, consider the Wimpy Robot behavior: your robot
gets attracted by a light source, investigates with great curiosity for a while, then gets scared, turns around, and
runs in the opposite direction as far and as fast as it can! Some other options include varying excitation and inhi-
bition or varying the sensor response curve to create new behaviors. You can call the function you implement in
the Behaviors.CREATIVE section of Behavior.go(). Repeat your predictions and experiments recording
them on your wiki. Select your favorite and describe the algorithm and observed results briefly on the wiki.

Deliverables: On the wiki, post responses to each of the questions above, and a short video clip of each behavior. Be
sure to explain your documented algorithms and tests. Be prepared to demonstrate your work in lab.

Finishing Up: Time and Self-Assessment

After preparing your wiki materials, it’s time to update your self-assessment. Tally your individual time spent in your
saved progress bars, including time spent posting to the wiki. Next, each of you should fill in the ”End of Lab” column
of your Lab 2 skillchart, providing self-assessments for each skill area as of the end of the lab.

5



7 Extra Credit: Localization

If you finish the lab early, consider the additional problem of how you can program your robot to localize itself in the
presence of light sources with known fixed locations. Using the two-meter square from Lab 2, suppose there are two
light sources located at the corners of the square and the robot is placed behind the y = 0.5 m line, as shown in the
diagram below. With this set-up, program your robot to estimate it’s location in the world coordinate system.

Figure 2: Locations of the two light sources and shaded region for the unknown robot location.

Deliverables: Estimate your robot location for three different robot placements, and report the error.

6


