6.141:
 Robotics systems and science Lecture 15: Forward and Inverse Kinematics

Lecture Notes Prepared by Daniela Rus EECS/MIT
Spring 2012

Reading: Chapter3, Craig: Robotics

http://courses.csail.mit.edu/6.141/ Challenge: Build a Shelter on Mars

What is coming up in RSS

- Last time: grasping
- Today in class: grasping, FK, IK
- Today in lab: Lab 7, Lab 6 presentations
- Monday: Arthur Licata on Robot Ethics

Point Contact with Friction

- Consider a point contact exerting force at some angle θ to the surface normal. What happens?

$$
\theta_{\text {crit }}=\tan ^{-1} \mu
$$

Surface

- Produces a
of force directions

Grasp Synthesis with Friction

- Pick f1 and valid green direction
- Intersect with edge to get f2

Grasp Analysis With Friction

Consider forces $\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}$ at frictional contacts $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}$

When can $\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}$ oppose one another without sliding?
Each force must Point $\mathbf{p}_{\mathbf{1}}$ (resp. $\mathbf{p}_{\mathbf{2}}$) must

Grasp Synthesis With Friction

Choose a compatible pair of edges $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}$
Intuition? Using what data? How to choose?

Grasp Synthesis (regions)

- f2 placement has error ε
- f2 can point to any force in pink region

Grasp Synthesis (regions)

- But if we put f1 in the pink region, which points in the blue region can point to it?

Grasp Synthesis (friction)

- 2 Finger Forces have to be within friction cones to stick
- 2 Finger Forces have to point at each other
- So...
- We need to find 2 edges with overlapping friction cones

Grasp Synthesis With Friction

Choose target region for contact point $\mathbf{p}_{\mathbf{1}}$
Determine feasible target region for contact $\mathbf{p}_{\mathbf{2}}$
Orient and scale $\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}$ so as to cancel along $\overline{\mathbf{p}_{\mathbf{1}} \mathbf{p}_{\mathbf{2}}}$

Example: 6.141 robot

Arm Control to Reach

- Mechanism design
- Forward kinematics
- Inverse kinematics

Kinematic Mechanisms

Link: rigid body Joint: constraint
 on two links Kinematic mechanism: links and joints

Cylindrical
2 freedoms

The Planar 3-R manipulator

- Planar kinematic chain
- All joints are revolute

Kinematic modeling

- Link
- Actuated joint
- End effector (EE)
- Reference point on EE_{y}
- Joint coordinates $\theta_{1}, \theta_{2}, \theta_{3}$

- End effector coordinates

$$
x, y, \phi
$$

- Link lengths (l_{i})

Kinematic transformations

- Direct kinematics
- Joint coordinates to end effector coordinates
- Sensors are located at the joints. DK algorithm is used to figure out where the robot is in 3-D space.
- Robot "thinks" in joint coordinates. Programmer/ engineer thinks in "world coordinates" or end effector coordinates.
- Inverse kinematics
- End effector coordinates to joint coordinates
- Given a desired position and orientation of the EE, we want to be able to get the robot to move to the desired goal. IK algorithm used to obtain the joint coordinates.
- Essential for control.

Inverse kinematics has multiple solutions

Which is the correct
robot pose ?

Kinematics Summary

Robot kinematic calculations deal with the relationship between joint positions and an external fixed Cartesian coordinate frame.
Dynamics, force, momentum etc. are not considered.

Forward and Inverse Kinematics

- So far, have cast computations in Cartesian space
- But manipulators controlled in configuration space:
- Rigid links constrained by joints
- For now, focus on joint values
- Example 3-link mechanism:
- Joint coordinates $\theta_{1}, \theta_{2}, \theta_{3} y^{\dagger}$
- Link lengths L_{1}, L_{2}, L_{3}
- End effector coordinates
- "Reference pose" describec by x, y, and ϕ (w.r.t. verticail
- How can we relate EE to configuration variables?

Forward Kinematics

- Given mechanism description and joint values, express end effector pose in Cartesian coordinates
- Example: two-link arm with one sliding, one rotating joint
- Configuration variables:
- Joint coordinates d, θ
- Link lengths (both 1)
- End effector coordinates
- "Reference point" (x, y)
- Challenge: express as

$$
\begin{aligned}
& x=x(d, \theta)= \\
& y=y(d, \theta)=
\end{aligned}
$$

Inverse Kinematics

- Given end effector pose in Cartesian coordinates, identify the joint values that yield specified pose
- Challenge: solve for joint values in terms of pose

$$
\begin{aligned}
\theta & =\theta(x, y) \\
& = \\
d & =d(x, y) \\
& =
\end{aligned}
$$

Hints:

Why is IK difficult?

- Nonlinear
- Revolute joints \rightarrow inverse trigonometry
- Multi-valued

- Often multiple solutions for a single Cartesian pose
- Discontinuities and singularities
- Can lose one or more DOFs in some configurations
- Possibly over-constrained (no exact solution)
- Use of approximation and iterative algorithms
- Dynamics
- In reality, want to apply forces and torques (while respecting physical constraints), not just move arm!

Direct kinematics

Inverse kinematics

$$
\begin{aligned}
& x=l_{1} \cos \theta_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right)+l_{3} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \\
& y=l_{1} \sin \theta_{1}+l_{2} \sin \left(\theta_{1}+\theta_{2}\right)+l_{3} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \\
& \phi=\left(\theta_{1}+\theta_{2}+\theta_{3}\right) \quad \text { Given } x, y, \phi, \text { solve } \\
& \quad \text { for } \theta_{1}, \theta_{2}, \theta_{3}
\end{aligned}
$$

A Trigonometric Digression

$$
\begin{aligned}
& \sin \theta=-\sin (-\theta)=-\cos \left(\theta+\frac{\pi}{2}\right)=\cos \left(\theta-\frac{\pi}{2}\right) \\
& \cos \theta=\cos (-\theta)=\sin \left(\theta+\frac{\pi}{2}\right)=-\sin \left(\theta-\frac{\pi}{2}\right)
\end{aligned}
$$

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

$$
\sin \theta= \pm \sqrt{1-\cos ^{2} \theta}
$$

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

$$
\cos (\alpha+\beta)=\cos \alpha \quad \cos \beta-\sin \alpha \quad \sin \beta \quad \cos \theta=\left(1-\mathrm{t}^{2}\right) /\left(1+\mathrm{t}^{2}\right)
$$

$$
\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \quad \sin \theta=2 \mathrm{t} /\left(1+\mathrm{t}^{2}\right)
$$

$$
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
$$

Arctangents

By definition $\tan \theta=\frac{\sin \theta}{\cos \theta}$, but tan has a period of π, whereas \sin and cos have a period of $\mathbf{2 \pi}$. If it is known that

$$
x=r \cos \theta, \quad y=r \sin \theta, r>0
$$

then recover with

$$
\theta=\arctan \left(\frac{y}{x}\right)=\arctan \left(\frac{r \sin \theta}{r \cos \theta}\right)
$$

But, this only gives solution in first and fourth quadrants. The signs of x and y actually uniquely determine the quadrant, so use:

$$
\theta \leftarrow \operatorname{atan} 2(y, x)
$$

and then $\tan \theta=\frac{y}{x}, \quad \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}, \quad \cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}$

Forward Kinematics

- Traverse kinematic tree and propagate transformations downward
- Use stack
- Compose parent transformation with child's
- Pop stack when leaf is reached
- High DOF models are tedious to control this way

Planar Example

Example: 3DOF Revolute Arm

Three revolute joints. Write s_{1} and c_{1} for $\sin \theta_{1}$ and $\cos \theta_{1}$ respectively.
Downward elbow angle is $\theta_{3-2}=\theta_{3}-\theta_{2}$ write:

$$
\begin{aligned}
& s_{3-2}=\sin \theta_{3-2}=\sin \left(\theta_{3}-\theta_{2}\right) \\
& c_{3-2}=\cos \theta_{3-2}=\cos \left(\theta_{3}-\theta_{2}\right)
\end{aligned}
$$

Forward Kinematics

b.

$$
r=\sqrt{x^{2}+y^{2}}=l_{2} c_{2}+l_{3} c_{3-2}
$$

$$
h=z-l_{1}=l_{2} s_{2}-l_{3} s_{3-2}
$$

$$
\begin{aligned}
& x=\left[l_{2} c_{2}+l_{3} c_{3-2}\right] c_{1} \\
& y=\left[l_{2} c_{2}+l_{3} c_{32}\right] s_{1} \\
& z=l_{1}+l_{2} s_{2}-l_{3} s_{3-2}
\end{aligned}
$$

Solution for Planar Example

$$
\begin{aligned}
& x^{2}+y^{2}=a_{1}^{2}+a_{2}^{2}-2 a_{1} a_{2} \cos \left(\pi-\theta_{2}\right) \\
& \cos \theta_{2}=\frac{x^{2}+y^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}
\end{aligned}
$$

for greater accuracy

$$
\begin{aligned}
& \begin{aligned}
\tan ^{2} \frac{\theta_{2}}{2} & =\frac{1-\cos \theta}{1+\cos \theta}=\frac{2 a_{1} a_{2}-x^{2}-y^{2}+a_{1}^{2}+a_{2}^{2}}{2 a_{1} a_{2}+x^{2}+y^{2}-a_{1}^{2}-a_{2}^{2}} \\
& =\frac{\left(a_{1}^{2}+a_{2}^{2}\right)^{2}-\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)-\left(a_{1}^{2}-a_{2}^{2}\right)^{2}}
\end{aligned} \\
& \theta_{2}= \pm 2 \tan ^{-1} \sqrt{\frac{\left(a_{1}^{2}+a_{2}^{2}\right)^{2}-\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)-\left(a_{1}^{2}-a_{2}^{2}\right)^{2}}}
\end{aligned}
$$

Inverse Kinematics of 3DOF Manipulator

Solving for the Elbow

Can choose an "up elbow" solution with $s_{3}=+\sqrt{1-c_{3}^{2}}$
or a "down elbow" solution with $s_{3}=-\sqrt{1-c_{3}^{2}}$
where $c_{3}=\frac{x^{2}+y^{2}+\left(z-l_{1}\right)^{2}-l_{2}^{2}-l_{3}^{2}}{2 l_{2} l_{3}}$

In either case can then recover θ_{3} with

$$
\theta_{3}=\operatorname{atan} 2\left(s_{3}, c_{3}\right)
$$

Pushing On...

$$
\begin{aligned}
& r=l_{2} c_{2}+l_{3} c_{3-2}=l_{2} c_{2}+l_{3} c_{3} c_{2}+l_{3} s_{3} s_{2}=k_{1} c_{2}+k_{2} s_{2} \\
& h=l_{2} s_{2}-l_{3} s_{3-2}=l_{2} s_{2}-l_{3} s_{3} c_{2}+l_{3} c_{3} s_{2}=k_{1} s_{2}-k_{2} c_{2} \\
& d=+\sqrt{k_{1}^{2}+k_{2}^{2}} \\
& \gamma=\operatorname{atan} 2\left(k_{2}, k_{1}\right)
\end{aligned} \text { and so } \quad \begin{aligned}
k_{1}=d \cos \gamma \\
k_{2}=d \sin \gamma
\end{aligned} \quad \begin{aligned}
& k_{1}=l_{2}+l_{3} c_{3} \\
& k_{2}=l_{3} s_{3}
\end{aligned}
$$

And on...

$r=d \cos \gamma \cos \theta_{2}+d \sin \gamma \sin \theta_{2}=d \cos \left(\theta_{2}-\gamma\right)$
$h=d \cos \gamma \sin \theta_{2}-d \sin \gamma \cos \theta_{2}=d \sin \left(\theta_{2}-\gamma\right)$
$\theta_{2}-\gamma=\operatorname{atan} 2\left(\frac{h}{d}, \frac{r}{d}\right)=\operatorname{atan} 2(h, r)$ since $d>0$

Final Inverse Kinematics

$$
\begin{aligned}
& \theta_{1} \leftarrow \operatorname{atan} 2(y, x) \\
& c_{3} \leftarrow \frac{x^{2}+y^{2}+\left(z-l_{1}\right)^{2}-l_{2}^{2}-l_{3}^{2}}{2 l_{2} l_{3}} \\
& s_{3} \leftarrow+\sqrt{1-c_{3}^{2}} \\
& \theta_{3} \leftarrow \operatorname{atan} 2\left(s_{3}, c_{3}\right) \\
& \theta_{2} \leftarrow \operatorname{atan} 2\left(z-l_{1}, \sqrt{x^{2}+y^{2}}\right)-\operatorname{atan} 2\left(l_{3} s_{3}, l_{2}+l_{3} c_{3}\right)
\end{aligned}
$$

Putting it All Together: Grasping

- Input workspace, obstacles, and manipuland:
- Determine a feasible grasp (set of contact points)
- Use IK to solve for target end-effector pose in c-space
- Plan a collision-free reach to the computed pose
- Control end-effector along desired trajectory

What have we swept under the rug?

- Sensing
- Shape, pose of target object, accessibility of surfaces
- Classification of material type from sensor data
- Freespace through which grasping action will occur
- Prior knowledge
- Estimate of μ, mass, moments given material type
- Internal, articulated, even active degrees of freedom
- Uncertainty \& compliance
- Tolerate noise inherent in sensing and actuation
- Ensure that slight sensing, actuation errors won't cause damage
- Handle soft fingers making contact over a finite area (not a point)
- Dynamics
- All of the above factors may be changing in real time

Pushing

- Straight-line motion

Pushing

- Clockwise rotation

Pushing

- Counter-clockwise rotation

Pushing

- Robust translation

What if we do not know where the center of mass is?

Pushing

- Robust translation

Push and sense: if clockwise rotation, move right if counterclockwise rotation move left

