Localization

RSS Technical Lecture 11 Friday, March 15, 2012 Prof. Teller

Text: Siegwart and Nourbakhsh Ch. 5

Dudek and Jenkin Ch. 7

Navigation Overview

- · Where am I?
 - Localization (today)
 - Assumes perfect map, imperfect sensing
- How can I get there from here?
 - Planning (earlier this week)
 - Assumes perfect map, sensing, and actuation
- What have I observed in my travels?
 - Mapping (next week)
 - Assumes perfect localization
- Can I build map and localize on-line?
 - Yes; using SLAM
 - Assumes no prior knowledge of the world

Today:

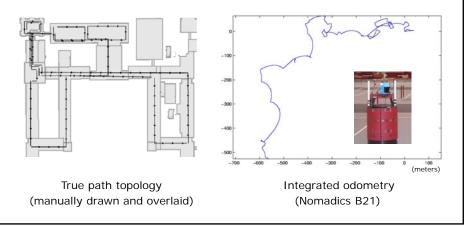
- Problem statement
- Terminology
- Challenges
- Landmarks
- Triangulation
- Uncertainty
- Examples

Thought experiment

- Does it make sense to localize in a void (an environment containing absolutely nothing)?
 - ... not very interesting; We conclude that there has to be some kind of "stuff" in environment
- What if the environment is isotropic (space, fog, water, desert, jungle etc.)?
 - ... again, not very interesting for robot to move or perform tasks within such an environment

We conclude that environment must contain *features* that can be sensed (distinguished) by bot

Localization Problem Statement

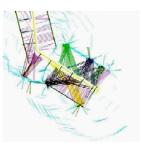

- Given some representation of the environment, to *localize*, robot must, through sensing, determine its pose with respect to the specified representation
- Defined with respect to some frame or feature set that is external to robot:
 - Global coordinate frame
 - E.g., GPS (Earth) coordinates
 - Local coordinate frame
 - · Ceiling or floor tiles
 - Mission starting pose (may not be observable!)
 - Environment features
 - E.g., nearby walls, corners, markings

Basic Localization

- Open-loop pose estimation:
 - Maintain pose estimate based on expected results of motion commands (no sensing)
- Dead reckoning:
 - Use proprioception (odometry, inertial) to estimate pose w.r.t. initial coordinate frame
 - Multiple error sources:
 - · Wheel slip, gear backlash
 - Noise (e.g. from encoders)
 - · Sensor, processor quantization errors
 - Pose error accumulates with time and motion
 - Typically ~ a few percent of distance traveled

Dead Reckoning Error

- Two hours of slow, rolling motion through MIT main campus corridors at third-floor level
 - Bosse et al. (IJRR 2004)
- High-precision inertial sensors exist... do they solve problem?


Landmark Attributes

- Is landmark *passive* or *active*?
 - Must sensor emit energy to sense landmark?
- Is landmark natural or artificial?
 - If placed in env't, how are locations chosen?
- Which sensor(s) can detect it?
 - Vision, sonar, radio, tactile, chemical, ...
- What are landmark's geometric properties?
 - Plane, line, segment, point, diffuse source, ...
- What is discriminability of landmark?
 - (Will discuss this in detail in a minute)

Landmark Types		
	Passive	Active
Natural	Wall corner Texture patch	Sun, North star Magnetic dipole
	River bend	Pressure gradient
	Earth's surface	Mineral vent
Artificial	Surveyor's mark	Chemical marker
	Retro-reflector	Radio beacon
	Lighthouse (day)	Lighthouse (night)
	Trail blaze	LORAN
	Buoy, channel marker	GPS

Types of Measurements

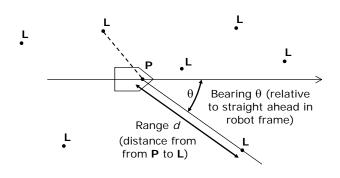
- · Range to surface patch, corner
 - Sonar return
- Bearing (absolute, relative, differential)
 - Compass; vision (calibrated camera)
- Range to point
 - RSS, TOF from RF/acoustic beacon
 - Cricket (TDoA of acoustic & RF pulse)
- · Range and (body-relative) bearing to object
 - Radar return
 - Laser range scanner return
 - Vision (stereo camera rig)
- · Distance to sea surface, floor
 - Pressure (depth), bathymetry (depth, altitude)

Discriminability Challenges

- Landmark Detection
 - Is landmark distinguishable from background?
- · Landmark Measurement, Data Fusion
 - Sensor gives a noisy, quantized measurement of landmark geometry (bearing and/or range)
 - How accurately can a measurement localize a landmark?
 - How can multiple corrupted measurements be combined into one accurate localization estimate of a landmark?
- Landmark Identification
 - To which element of representation (i.e., map) does the detected and measured landmark correspond?
 - To which previously-observed landmark (if any) does the currently observed landmark correspond?
 - Also known as the "data association" or "feature correspondence" or "matching" problem

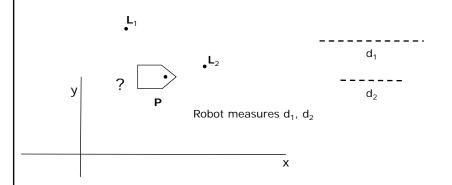
Localization Degrees of Freedom

- Model robot/vehicle as a single rigid body
- Aerial, orbital, underwater navigation
 - 6 DOFs: three position + three orientation
- Terrestrial operation (rolling, walking)
 - 3 DOFs: two position + one orientation
 - Used for planar, mildly non-planar terrain
- Underwater surveying (high C. O. B.)
 - 4 DOFs: three position + one orientation

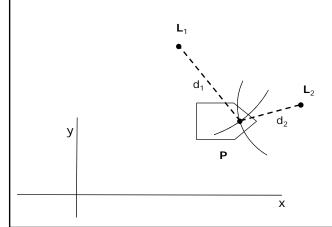

WHOI AUV, Hanu Singh (Aug. 2004)

Localization Scenarios

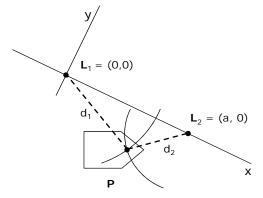
- Estimating location in 2D
 - From measured *ranges* (distances)
 - From measured *bearings* (directions)
 - -We'll look at noiseless, noisy cases


Triangulation

- Natural geometry for 2D localization
 - Simplest framework combining range, bearing
 - Used by Egyptians, Romans for engineering


Triangulation from range data

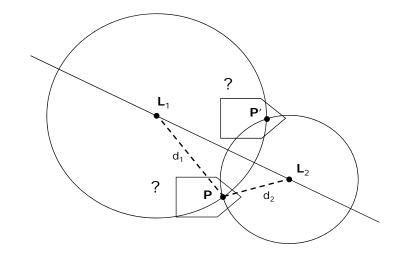
- Robot at unknown position **P** measures distances d_1 , d_2 to *known* landmarks \mathbf{L}_1 , \mathbf{L}_2
- Given d₁, d₂, what are possible values of **P**?


Triangulation from range data

 Robot must lie on circles of radius d₁, d₂ centered at L₁, L₂ respectively

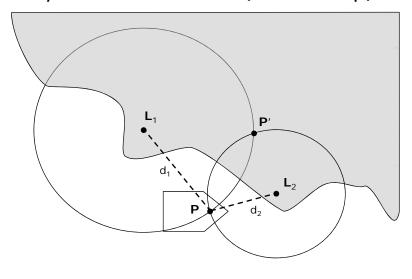
Triangulation from range data

• Change basis: put L_1 at origin, L_2 at (a,0)

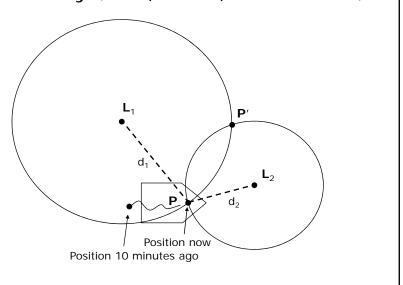

(Try e.g. setting
$$d_1 = a$$
, $d_2 = 0$)

 $x = (a^{2} + d_{1}^{2} - d_{2}^{2})/2a$ $y = \pm \sqrt{(d_{1}^{2} - x^{2})}$

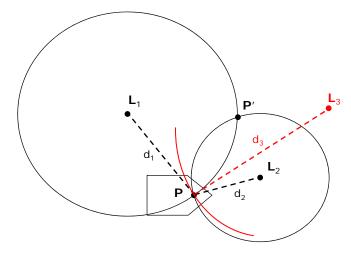
Are we done?


Triangulation from range data

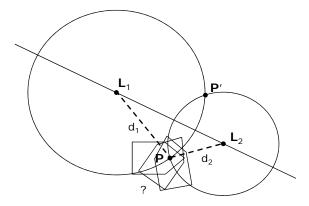
- \bullet Two solutions in general, P and P'
- How to select the correct solution?


Disambiguating solutions

• A priori information (richer map)

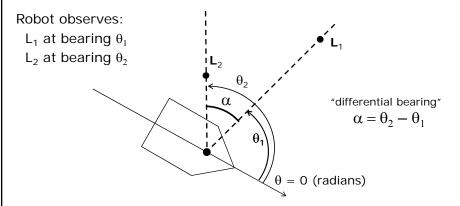

Disambiguating solutions

• Continuity (i.e., spatiotemporal information)

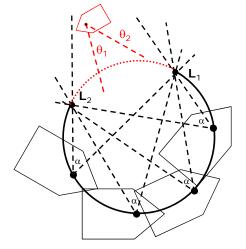

Disambiguating solutions

Additional landmarks (redundancy)

Triangulation from range data

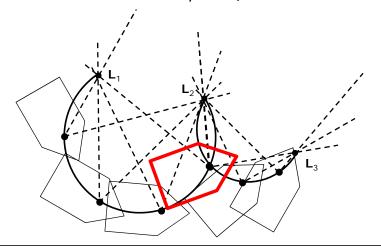

- Are we done yet, i.e., is pose fully determined?
- No: absolute heading is not determined

- How to get heading?
 - Motion (difference of positions inferred across *time*)
 - Extent (using two ranges measured over ship baseline)

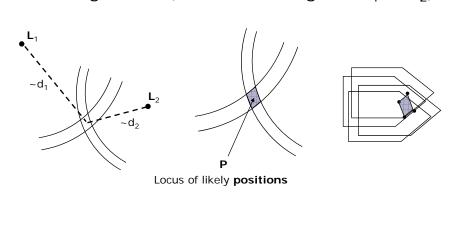

Triangulation from bearing data

- Body-relative bearings to two landmarks
 - Bearings measured relative to "straight ahead"

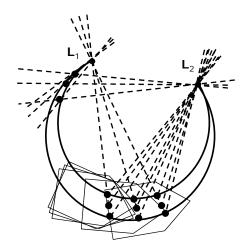
... are two bearings enough for unique localization?


Triangulation from two bearings

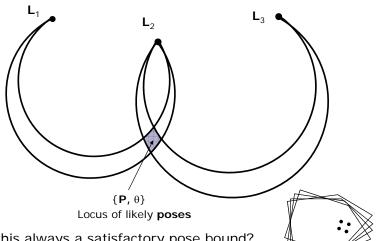
- · Robot somewhere on circular arc shown
 - Can it be anywhere on circle? (No; ordering constraint)


Triangulation from bearing data

- Measure bearing to third landmark
 - Yields robot position and orientation
 - Also called robot *pose* (in this case, 3 DoFs)

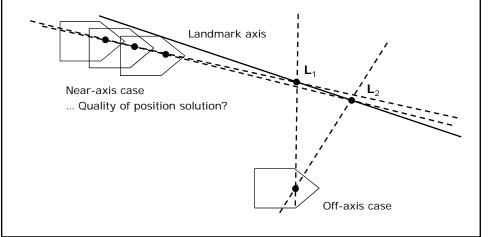

Measurement Uncertainty

- Ranges, bearings are typically imprecise
- Range case (estimated ranges ~d₁, ~d₂)


Measurement Uncertainty

- Two-bearing case (estimated bearings $\sim \theta_1$, $\sim \theta_2$)
- What is locus of recovered vehicle poses?
- Solve in closed form? Is there an alternative?

Measurement Uncertainty


• Bearing case (measurements $\sim \theta_1$, $\sim \theta_2$, $\sim \theta_3$)

• ... is this always a satisfactory pose bound?

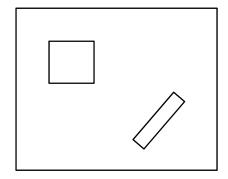
Landmark, sensor geometry

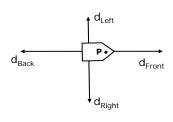
 Consider off-axis and near-axis bearing measurements to two known landmarks (simplification: assume absolute heading is known)

Dilution of Precision

- General phenomenon that sensor, landmark, and motion geometry can degrade solution quality, even for a fixed set of observed landmarks
- Geometric DOP = GDOP
 - Also Vertical DOP, Horizontal DOP etc.
- How to take GDOP into account?
 - If sufficiently many landmarks are available, select those with minimal GDOP
 - Decouple pose, solve separately, recombine

To Think About: RSS Challenge


- Will your challenge solution rely on localizing within the provided map?
 - Can solve challenge with or without localization
 - Decide early, as choice has significant implications
- Source 1: colored blocks
 - At known map locations, but ID may not be available
- Source 2: colored fiducials
 - Balls at known map locations, in unique color combinations
- Source 3: sonar returns
 - Range data from 2 (or 4, if you choose) sonars on chassis



To Think About: Localization

- Suppose robot sonars return four (noisy) range measurements $\{d_{F,B,L,R}\}$ as shown
- What robot poses are consistent with data?
- How might you identify them efficiently?

