
6.141:Robotics systems and science
Lecture 8: Motion Planning I

 control architectures and c-space

Lecture Notes Prepared by Daniela Rus
EECS/MIT

Spring 2012
Thanks to Vijay Kumar

Reading: Chapter 3, and Craig: Robotics
 http://courses.csail.mit.edu/6.141/!
Challenge: Build a Shelter on Mars!

Where are we?
  Last Module:

  Vision
  Software engineering

  Today:
  Robot Control Architectures
  Deliberative control: motion planning and

c-spaces

  Reading: chapter 6

Motion Planning

Kawada HRP-2

Unimation PUMA

Crusher (CMU)

KUKA youBot HERB (CMU)

Willow Garage PR2

ABB

What is motion planning?
Objective:

Find a series of control actions that moves the
robot from a start state to a goal condition,
while respecting constraints and avoiding
collision.

Task planning:
Start and goal are expressed in terms of

environment state rather than robot state
May require symbolic sequential reasoning

  We have seen feedback control
  How do we put together multiple

feedback controllers?
  in what order?
  with what priority?

  How do we generate reliable and
correct robot behavior?

Controlling in the large

  A control architecture provides a set of
principles for organizing a robot
(software) control system.

  Like in computer architecture, it
specifies building blocks

  It provides:
  structure
  constraints

Control Architecture

  Deliberative control
 
  Reactive control

  Hybrid control

  Behavior-based control

Control Architecture Types

Deliberative Architecture
  Maps, lots of state
  Look-ahead
  “Think hard, then act”

Sense Act Map, Think

Reactive Architecture

  No maps, no state
  No look ahead
  “Don’t think, react!”

Sense (Re)Act

Behavior-based Architecture
  Multiple concurrent sense-act processes
  Each behavior uses local sensing to

compute its best action
  Robot a combination of behaviors
  “Think the way you act”

 Criteria For Selection
deliberative reactive behavior

Task and

environment

Run-time
constraints

Correctness/
Completeness

Hardware

Motion Planning

How do we command the robot to move
from A to B despite complications?

Complications: error in maps, sensing,
 control, unexpected obstacles, etc.

Sense

Plan

Signals to joint controllers/drivers
•  joint velocities, joint torques

Local data about the world

Global picture pf the world

Act

Deliberative Architecture

Map

Next week

In 2 Weeks

Last Week

Motion Planner

Trajectory Generator

Controller

Signals to joint controllers/drivers

subgoals

smooth trajectory

Robot motors, sensors
+ External world

Localization

Calibration

Motion Planning

Trajectory generation from
waypoints

Different interpolations
Depending on robot constraints

 Unknown Environments
(No Model)

Motion Planning
  Known

Environments
(Model)

ONLINE
ALGORITHMS

OFFLINE
ALGORITHMS

Example: how do we find a bridge in the fog?

Online Motion Planning

Always finds a path
(if it exists)

Visibility Graphs

Vertices: Start, Goal,
 obstacle vertices
Edges: all combinations (vi, vj) that do not intersect any obstacle

Shortest path
Start

Finish

A

B

C D

E

35 95

60

55 155
15 45

25

Shortest path
Start

Finish

A

B

C D

E

35 95

60

55 155
15 45

25

1 0

35 95

Shortest path
Start

Finish

A

B

C D

E

35 95

60

55 155
15 45

25

1 0

35 95

Find node with smallest temporary value; label neighbors

2 35

50 90

Shortest path
Start

Finish

A

B

C D

E

35 95

60

55 155
15 45

25

1 0

35 95

Find node with smallest temporary value; label neighbors

2 35

50 90
3 50

Shortest path
Start

Finish

A

B

C D

E

35 95

60

55 155
15 45

25

1 0

35 95

Destination found, path is AEDC

2 35

50 90 75
3 50 4 75

Search Path: Dijkstra’s Algorithm
1 function Dijkstra(G, w, s)
 2 for each vertex v in V[G] // Initializations
 3 d[v] := infinity
 4 previous[v] := undefined
 5 d[s] := 0
 6 S := empty set
 7 Q := set of all vertices
 8 while Q is not an empty set // The algorithm itself
 9 u := Extract_Min(Q) // O(n) for linked lists; Fib. Heaps?
10 S := S union {u}
11 for each edge (u,v) outgoing from u
12 if d[v] > d[u] + w(u,v) // Relax (u,v)
13 d[v] := d[u] + w(u,v)
14 previous[v] := u

Visibility Graphs Summary

26

What if the robot is not a point?	

What if the robot is not a point?

Obstacle
1.0

1.0 Robot

Configuration space

Obstacle

Robot

obstacle free

obstacle free

(x, y, θ) DOF C-space :

Configuration space

Obstacle

Robot

Robot

invalid

invalid obstacle free

obstacle free

Configuration
space = the set
of all feasible
configurations

3-D space for
planar, mobile
robots

(x, y, θ) DOF C-space :

30

Free Space
From
Robot Motion Planning
J.C. Latombe

Transforming to C-Space

Higher
dimension

Simpler problem

Transforming to C-Space

Allowable Robot positions
(no rotations)

Robot

Allowable Robot positions
(no rotations)

Robot

Allowable Robot positions
(for some robot rotation)

C-space Algorithm

Step 1: Reflect Robot

C-space Algorithm

Step 2: Vert (- Robot) + Vert (Obstacle)

C-space Algorithm

Step 3: ConvexHull (Vert (- Robot) + Vert (Obstacle))

Convex Hull Algorithm

Convex Hull Algorithm

A

B

C D
E

Convex Hull Algorithm

A

B

C D
E

 Algorithm Summary
  Compute c-space for each obstacle
  Compute v-graph
  Find path from start to goal

S

G

V-graph complete; gives optimal shortest path in 2d
 What about 3d? What else can we optimize?

