
Massachusetts Institute of Technology

Robotics: Science and Systems I
Lab 5: Local Navigation and Error Analysis

Distributed: 3/7/2012, 3pm
Checkpoint 1:, 3/12/2012, 3pm
Checkpoint 2: 3/14/2012, 3pm

Wiki Materials and Briefings Due: 3/19/2012, 3pm

Objectives and Lab Overview

In Lab 4 you explored using camera data in order to sense your environment and react appropriately to it. In lecture,
we have started to learn about navigation by considering localization and navigation-oriented sensing.Your objective in
this lab is to preliminarily integrate these different capabilities. This lab will give you the technical skills to incorporate
bump and sonar sensors. You will learn to process sensor measurements with simple filters. You will learn how to
make your robot follow a wall. Finally, you will learn how to acquire a model of the environment and use it to allow
your robot to tour an obstacle.
Your objectives in this lab are to:

• Integrate bump and sonar sensing into your robot.

• Program the robot to detect and react to collisions.

• Program the robot to reliably detect an obstacle wall and drive along it.

• Program the robot to acquire a geometric model for a convex obstacle from the sensor data.

We advise you to read the lab hand-out quickly at the start of the lab and determine what work can be done by splitting
up responsibilities among group members.

Time Accounting and Self-Assessment:
Make a dated entry called “Start of Local Navigation Lab” on your Wiki’s Self-Assessment page. Before doing any
of the lab parts below, assign a number to describe your proficiency: 1=Not at all proficient; 2=slightly proficient;
3=reasonably proficient; 4=very proficient; 5=expert

• Electronics: How proficient are you at working with sonar and bump sensors?

• Data Analysis: How proficient are you at working with measurement data and error analysis?

• Motion Control: How proficient are you at crafting robot motion algorithms using sensor feedback?

To start the lab, you should have:
• Your robot from the previous lab.

• Sonar sensor hardware: 2 sonar sensors on mounts plus “nuts and bolts” to attach them to your robot.

• 2 bump switches (1 clockwise and 1 counter-clockwise) and 2 whiskers, plus wiring, header, heat shrink, con-
nection plates and screws,

Physical Units

We remind you to use MKS units (meters, kilograms, seconds, radians, watts, etc.) throughout the course and this lab.
In particular, this means that whenever you state a physical quantity, you must state its units. Also show units in your
intermediate calculations.

1

1 Software and Development Environment Preliminaries

Follow the usual procedure to populate your working area with the provided lab code. On the Sun workstation, one
person should first update the source directory ˜/RSS-I-pub/ by running the following commands:

cd ˜/RSS-I-pub
svn up

Now, as in previous labs, export the new LocalNavigation directory into your group’s working copy and add it
(and all subdirectories) to the list of files under version control:

cd ˜/RSS-I-group/
svn export ˜/RSS-I-pub/labs/lab5/
svn export ˜/RSS-I-pub/labs/lab5_msgs/
svn add lab5*
svn commit -m "added new source for LocalNavigation lab"

We will again be using ROS. Recall from Lab 4, that there are several options for running ROS nodes (e.g., SSH
forwarding, or distributing the ROS nodes on the workstation and netbook). You may find it more convenient to run
your code on the workstation as you develop and debug it, but you should also ensure that it runs correctly on the
laptop for autonomous operation.

2 Incorporate the Bump and Sonar Sensor Hardware

Recall from the lecture on sensors that a bump sensor is a digital on/off sensor, and a sonar is an analog sensor.
1. Create wiring harnesses for each of your bump sensors. The sensors have three connections: COM, NO (normally

open) and NC (normally closed). When the bump switch is not actuated, the COM connection is shorted to the
NC connection. When the switch is activated as a result of the robot hitting a wall, the COM connection is shorted
to the NO terminal and the COM to NC connection is broken.

Design your wiring harnesses such that the COM terminals are connected to ground and the NO terminals are
connected to the signal line of the digital inputs on the µOrcboard. We use pull-up resistors on the µOrcboard
such that when the bump switch is not activated, the µOrcboard reads a high logic level from the digital I/O pin.
When the the robot hits a wall, the µOrcboard will read a low logic level.

2. Mount your bump sensors onto the front of your robot. You should have two types of bump sensor: one rotates
clockwise and the other rotates counter-clockwise. You should place the clockwise sensor on the right side of the
front of your robot so that the whisker points toward the outside of the robot.

Once you have mounted the sensors and installed the whiskers, connect the bump sensors to the slow digital I/O
ports of µOrcboard: the left bump sensor to port 0 and right to port 1. The COM header holes should connect
to the GND pin. Route your wires neatly, and bend the bump sensor whiskers to minimize contact distance (i.e.
distance from the robot to the obstacle when the bump sensor activates) and avoid hitting any mounting screws.

3. Using the small bus PCB, create a wiring harness for your sonars. Both sonars communicate with the µOrcboard
using the shared I2C communication bus. This is a two-wire, bidirectional bus where the µOrcboard is the master
and the sonars are the slave devices. In addition to the data (SDA) and clock (SCL) lines used for communication,
the sonars also require +5V and a ground connection.

The µOrcboard has two I2C ports, one that uses 3.3V and another that uses 5V. Because the sonars run on
5V, you’ll need to use the 5V I2C port. Both ports are side-by-side just above channel 0 of the fast digital I/O
bank. Starting from the I2C pin closest to the fast I/O bank, the I2C connections on the four pin header are
Ground, SCL, +5V, SDA, the SDA connection being closest to the center of the µOrcboard. On the sonars, the
connector pin order, starting from the pin closes to the corner and running inward is 5V, SDA, SCL, Mode (which
you should leave unconnected) and Ground. For more information, consult the SRF02 technical specification:
http://www.robot-electronics.co.uk/htm/srf02techI2C.htm

2

4. Before mounting the sonar sensors, test them with the robot up on blocks. You should have two sonar sensors
with different IDs. We will use rxplot to examine the output of the sonars:
(a) Start roscore on the netbook with:

ssh -X rss-student@netbook
export ROS_MASTER_URI=http://netbook:11311
export ROS_HOSTNAME=netbook
roscore

(b) Start the ROS nodes and rxplot from the workstation:
export ROS_MASTER_URI=http://netbook:11311
export ROS_HOSTNAME=workstation
roslaunch lab5 sonar_test.launch

5. Move a large object in front of each sensor individually to identify the front and rear sensor. Then, mount the
sonars on the left side of your robot using the supplied mounting plates, standoffs, and L-brackets.

Deliverables: Your report on the Wiki, named “LocalNavigation Lab Report Group N”,Please include a picture of
sensors and robot and let us know what was difficult, if anything. Also include a screenshot of the rxplot output.

3 Characterize your Sensors

In the field of observation, chance favors the prepared mind.
— Louis Pasteur

3.1 Getting More Sensor Data

In the previous lab, you saw how to get camera data from the robot by subscribing to /rss/video and potentially
odometry by subscribing to /rss/odometry. Now you’ll implement some new interfaces to process data from
your bumper and sonar sensors. Use rostopic to identify the proper messages and examine uorc_publisher
to determine the proper message types.

• Write a new java class called LocalNavigation that subscribes to the sonar and bumper data. Your event
handlers should (initially) do nothing more than print out the sensor state.

• LocalNavigation should extend NodeMain and implement the onStart(), onShutdown(),
onShutdownComplete(), and getDefaultNodeName() methods.

When everything seems to be working, drive your robot around manually using the SonarGUI program we have
provided, which extends VisionGUI from the last lab with some new capabilities. Verify that the sensor readings
are reasonable.

3.2 Collision Detection Using Bumpers

As you progress through the lab you will implement a Finite State Machine (FSM) which will ultimately be able to
explore a polygonal obstacle. You will begin the development of this FSM in the next few sections by writing some of
its sub-routines.

• Create a variable in your LocalNavigation class named state, and create a constant called STOP_ON_BUMP.

• Whenever your state is updated, publish a descriptive string on the topic /rss/state for debugging purposes.
You could do this by creating a method which you call to set the state, or by creating a class to represent the
state. A string can be published by using code similar to:

3

Publisher<org.ros.message.std_msgs.String> statePub;
...
statePub = node.newPublisher("/rss/state", "std_msgs/String");
...
org.ros.message.std_msgs.String str = new org.ros.message.std_msgs.String();
...
statePub.publish(str);

• Modify your bumper handler to stop the robot when state == STOP_ON_BUMP and any bumper is de-
pressed.

Change your code so that the initial value of state is STOP_ON_BUMP, and run it to verify the behavior is as
desired (drive the robot around manually with SonarGUI; it should automatically stop now when either bump sensor
encounters an obstacle).

3.3 Robot Alignment Using Bumpers

Now you will write an FSM sub-routine which aligns the front of the robot to be roughly parallel to a planar obstacle
facing the robot.

• Create new constants ALIGN_ON_BUMP, ALIGNING, and ALIGNED, each with a value unique relative to all
other state constants.

• Modify your bumper handler so that

– if state is ALIGN_ON_BUMP and either of the bumpers is depressed, state changes to ALIGNING

– if state is ALIGNING (including if it was just changed),

∗ if no bumper is depressed, the robot moves forward slowly
∗ if only one bumper is depressed, the robot rotates slowly in the appropriate direction to try to activate

the other bumper
∗ if both bumpers are depressed, the robot stops and state changes to ALIGNED

Change your code so that the initial value of state is ALIGN_ON_BUMP, and run it to verify the behavior is as
desired, using one of the provided obstacle surfaces (initiate the align behavior by manually driving one bump sensor
into an obstacle using SonarGUI, or just start the robot with the sensor already activated).
Test the behavior for at least 10 different starting positions of the robot with respect to the obstacle. In each case, use
the ruler and protractor provided in your lab kit to measure the angle of the robot face relative to the obstacle after the
robot enters the ALIGNED state.
Compute the minimum, maximum, and average error angles and include these values in your Wiki.

3.4 Checkpoint 1

• Sonars and bump sensors mounted on robot.

• Demonstrate functioning sensors using sonar_test.launch.

• Demonstrate ALIGN_ON_BUMP.

4

3.5 Sonar Calibration and Data Segmentation

In this part of the lab you will develop code which uses the side-facing sonars to detect the presence of an obstacle
wall and to incrementally estimate its start, end, and pose (location and orientation) in the world.
First, establish a global coordinate frame for your robot. For example, you may choose to use the coordinate systems
marked on the floor from prior labs, or you can simply define the world frame to be identical to the robot frame at the
start of each run. In either case, your robot should be at the origin and aligned to the x axis (i.e. θ = 0) at the start of
each run (in the latter arrangement, these hold by definition). Clearly describe your coordinate system in your Wiki.

• Make your LocalNavigation subscribe to the robot odometry, and ensure that when you start your code
your robot correctly reports that it is at (x, y, θ) = (0, 0, 0), even if it has driven around in a prior run. Note that
if you do not want to restart all the ROS nodes and the Orcboard between runs, you may need to write code to
reset the odometry in software (Robot.resetRobotBase() and Robot.setVelocity(0.0, 0.0))
at the start of each run.

• Choose a rectangular obstacle with one face roughly 1m long, and place it about 0.5m ahead and 0.5m to the
left (measured from robot frame origin) of the robot, with the selected face parallel to and facing the left side of
the robot.

We have provided new ROS messages which cause SonarGUI to graphically display robot poses, sonar points, lines,
and line segments. Create and publish new instances of these messages in your LocalNavigation code to display
all graphical data. When you are asked to include such data in your Wiki, just take a screenshot of SonarGUIwindow
showing the desired data.
You should not need to modify SonarGUI for any of the tasks we ask you to perform.

• Add code to your sonar handler to plot the locations of each sonar ping, in the world frame. You may assume
that the reported range for each ping gives the perpendicular distance from the mounting location of the
corresponding sonar on the left side of the robot to the detected object. Plot the front and rear sonar data with
different symbols. Note that you will have to combine the range values with the most recent robot odometry
data to produce the coordinates of sonar hit-points in world frame.

Take a screenshots of the GUI showing both front and rear sonar pings and post it on your wiki.

Using SonarGUI, drive your robot slowly past the obstacle several times, starting about 0.5m before the obstacle, and
ending about 0.5m after the obstacle each time. Estimate a threshold which segments the data into obstacle points and
non-obstacle points (you may want to temporarily add print statements to display the numeric values of each ping).
Take screen shoots showing of the different runs and post the on the wiki.

• Pick two colors, one to represent non-obstacle points, and one to represent obstacle points. In your code, use
the threshold to set the colors of the plotted points appropriately. Be aware that some sonars will display zero
for infinite distance.

How reliably does your threshold work? Does your code ever produce a false-positive (i.e., classify a sonar point as
an obstacle reflection when the sonar was unarguably not actually pointed at the obstacle)? or a false negative (a
sonar point classified as a non-obstacle point when the sonar was actually pointed at the obstacle)? Take a screenshot
of your GUI after a test run and post it on the Wiki.

In either case, you may wish to implement a simple low-pass filter on the sonar data (actually two separate filters,
one for the front sonar and one for the rear) as it is received. For example, you could implement a sliding-window
moving average filter, or an Infinite Impulse Response (IIR) filter1 (research those terms if you are not already familiar
with them). Ask a TA for help if you think you need a filter but are still unsure how to implement it.

1An IIR filter can be computed as rf = (1.0 − α)rf + αrn where rf is an instance field holding the current value of the range filter, α is a
constant weighting factor between 0.0 and 1.0 (e.g. 0.7), and rn is the newly acquired range value.

5

3.6 Modeling the Obstacle

Now you will formulate a model of the obstacle wall as a line (and later, as a line segment) in world frame. The overall
idea is that your robot will decide when an obstacle wall has begun, incrementally estimate the parameters of a line
which fits the obstacle data points as they are acquired, and then decide when the obstacle has ended.
You’ll develop this code in two stages. First, you will focus on the model acquisition and visualization. Then, in the
next section, you will integrate this code into the FSM you have been developing.
You will write code to compute the parameters (a, b, c) of a line

ax+ by + c = 0

which bests fits all existing sonar points (xi, yi) corresponding to the obstacle in the least-squares sense. Appendix
A gives the details of this computation. Read it carefully before you start writing the code.

• Add structured code to your LocalNavigation class, or create a new class, to incrementally estimate the
fit-line parameters (a, b, c). This means that your code should maintain a current estimate of of the parameters
and should be able to update those estimates accordingly as new obstacle points are detected. As you design
your code, pay particular attention to minimizing the amount of computation done for each newly acquired
sonar point. You should also have a clean way to reset the whole process. An incremental estimator like this
constitutes a simple linear filter.

• Adjust your sonar handler to call the line estimation code for each obstacle point (according to the threshold
you identified above) detected by either sonar. (Re)plot a line (not a line segment) in SonarGUI each time any
of the line parameters are updated (note that, unlike other objects, SonarGUI only draws one line at a time, so
the last line you drew will be automatically erased).

Use SonarGUI to manually drive your robot slowly past the obstacle several times, with SonarGUI incrementally
displaying your segmented (i.e. colored) sonar data, the fit-line as it is estimated, and the robot pose as it progresses
past the wall. Start each run about 0.5m before the front corner of the obstacle, and end about 0.5m after the end of
the obstacle. Take a screenshot of these runs and post them on the Wiki.
Deliverables: Your report on the Wiki should include a brief discussion and answers to any questions above. Be sure
to include

• the error data you measured for your bumper alignment behavior

• a description of how you defined your world coordinate frame

• the numeric value of the threshold you used for the sonar and a description of what it means and how your code
uses it

• a snapshot from the end of a sonar data run showing the collected robot poses, appropriately colored sonar data
points, and final obstacle fit line.

Briefly describe the structure and operation of your linear filter code, and point out any particular challenges, bugs,
or other difficulties you encountered.

4 Wall Following

In this section, you will add behaviors to your FSM which find and follow an obstacle wall in the environment. These
behaviors are examples of the Bug algorithm described by Lumelsky and Stepanov (1987).
Select an obstacle with a planar wall about 1m long, and place it somewhere in the world frame you defined above.
You will begin each test run with your robot at (0, 0, 0) in world frame, and you’ll use SonarGUI to manually point

6

the robot towards the selected obstacle face. Once it is aligned on a (slow!) collision course, let go of the controls.
Your FSM code will take over as soon as it detects the robot has encountered the obstacle with either bumper.
Temporarily disable the code in your sonar handler, set up the robot and obstacle, and verify that your existing bumper
alignment routine is working correctly. The robot should reliably approach the obstacle, align to face it, and stop.
Now you’ll implement a new subroutine which aligns the robot so its left side is parallel to and facing the obstacle:

• Add code to your bumper handler which is triggered when state is ALIGNED (including if it has just entered
that state). Once aligned, the robot should

– back up a small amount

– stop

– rotate clockwise π/2 radians

– stop and enter a new state ALIGNED_AND_ROTATED

The robot should end up with its left side parallel to the obstacle, separated by a distance d of about 0.5m (from
the wall to robot frame origin). You may wish to implement one or more intermediate states, and you may adjust
the actual distance d as you see fit (d will also be important for the tasks you will perform in the next sections,
so you may need to adjust it as you go along).

4.1 Finding the Start of the Wall

Your robot is now almost ready to follow the obstacle wall. Because we will ultimately be interested in touring the
whole obstacle perimeter, we will first back the robot up to the start of the wall (observe that, so far, the robot may
currently be at any point along the obstacle wall):

• add code to an appropriate event handler so that when state is ALIGNED_AND_ROTATED (including if it
was just changed) the state is immediately changed to a new state, BACKING_UP.

• re-enable your sonar handler, and adjust it so that

– if state is BACKING_UP and an obstacle is detected with either sonar (using your threshold code) the
robot moves slowly backwards, tracking the wall, as described below.

– it uses your linear filter to maintain continuous estimates of the obstacle fit-line parameters, and it (re)plots
the fit line in SonarGUI whenever its parameters change. Also, re-enable (if necessary) your code which
plots the colored sonar data points.

– if state is BACKING_UP and an obstacle is not detected with either sonar, the robot stops and enters a
new state FINDING_WALL.

To track the wall, implement a feedback controller (you may find P or PD control most appropriate) which computes
robot velocity commands to keep the robot approximately parallel to the wall at distance d.
Hint: You may wish to remind yourself of the formula for the perpendicular distance from a point—i.e. the robot
center point as reported most recently to your odometry handler—to a line (see appendix A), from which you can
derive the translational error term.
Hint: You can derive the orientation error term either from the robot orientation reported by odometry or from the
sonar data when both sonars have detected the object, or from a combination of the two sources.
Write your controller code in a structured way and trigger it to compute new robot velocity commands either periodi-
cally (e.g. every 50ms) or whenever new odometry or sonar data is supplied.
Hint: If you add a Java Timer to call your control code periodically, be aware that it will be executing in a different
thread than your ROS event handlers. Any state variables which can be read in one thread and written in another
require synchronization in both places.

7

4.2 Following the Wall

Now we’re ready to find and follow the wall. Add code to your sonar handler so that:

• the robot moves slowly forward whenever state is FINDING_WALL and neither sonar detects an obstacle

• whenever state is FINDING_WALL and either sonar detects an obstacle, state changes to a new state
TRACKING_WALL, the linear filter is reset, and the current robot pose (x, y, θ) and sonar readings are stored in
instance fields for later use.

• as long as state is TRACKING_WALL, the robot moves slowly forward, tracking the wall with your feedback
controller, and updating the linear filter. Again, SonarGUI should show a continuously updating display of the
robot pose, the current obstacle fit line, and the colored sonar data points.

• whenever state is TRACKING_WALL and neither sonar detects an obstacle, the robot stops, and state
changes to a new state WALL_ENDED. The wall fit line should be erased from SonarGUI; you will now
compute a line segment which more completely represents the wall. Use the current fit line parameters, the data
you stored above when the robot first found the wall, and the current robot pose and sonar readings to estimate
the endpoints of a line segment representing the wall, and add this segment to the display in SonarGUI.

Hint: You have more data than is necessary to define a line segment, so you will need to develop a method to reduce
the data to compute the segment. Estimate the relative certainties of the different kinds of data you have, and try to
rely primarily on the most certain values. For example, you may decide to make the line segment coincident with the
obstacle fit line, and use the other data only to find the positions of the two endpoints on this line.

4.3 Measuring Performance

To quantify the performance of your code, you will now collect some data and plot it.

• add a new boolean instance field to your LocalNavigation class called saveErrors

• add code to your feedback controller to write a line to an ASCII data file with the format

timestamp translation_error rotation_error

at each control update whenever saveErrors is true. The errors should reflect the difference between the
goal (distance and orientation from the wall) and the actual.

• use gnuplot, matlab or a spreadsheet program of your choice to plot each error vs. time for a single complete
run of your wall following behavior. At the end of the run, save a screenshot of the final state of the SonarGUI
window. Post both the plot and screenshot on the Wiki.

Deliverables: Your Wiki should include your error plots, screenshots, a brief description of your procedure, a discus-
sion of the architecture and operation of your controller code, and descriptions of any tasks you found particularly
challenging. Be sure to state the d value you have used. Be prepared to demonstrate your entire wall following
behavior at the start of the next lab.

5 Checkpoint 2
1. Drive the robot alongside a wall. The SonarGUI should be displaying the sonar data and the best-fit line estimated

from that data.

2. Demonstrate your robot finding and following a wall.

8

6 Model Acquisition

It’s a walk-off!
— Billy Zane, Zoolander

In this final part of the lab you will complete the FSM to acquire a geometric model for an obstacle in the environment.
You can assume that the obstacle is a simple closed convex polygon, and that each side of the obstacle is at least 1.5
times as wide as the front of your robot. You should not assume that your robot knows anything else about the obstacle,
including the number of sides.
The FSM you have developed up to this point can serve as the initial part of the model acquisition algorithm. Extend
it so that:

• at the end of each wall state is reset to ALIGN_ON_BUMP, and the robot is commanded with velocities that
drive it slowly counter-clockwise along a circle of radius d tangent to its current heading.

• for each wall, the obstacle points, fit line, and fit segment are all plotted in a color c which is distinct from
all the other wall colors (you may just randomly pick c for each wall, a random color generator is provided in
SonarGUI).

• the robot stops and enters a new terminal state, DONE, when it detects that it has toured the entire obstacle.

The main challenge here is to figure out how to decide when the tour is complete (and to get all the details right).
There is more than one way to determine completion. Consider different possibilities, describe them in your writeup,
and think about and document the relative strengths and weaknesses you expect for each. Specifically consider the
relative effects of sensing and command uncertainty that you predict, and think about and document how you could
make your termination procedure more robust to them.
Hint: what is the sum of the external angles of a convex polygon?
Test your behavior for at least two trials on at least two obstacles of different shapes (at least four trials total). Take
screenshots of the final SonarGUI window at the end of a good run on each obstacle, and include corresponding
error plots (i.e. at least two screenshots and four error plots). Capture these runs on video. (be sure your videos
include identifying information at the start).
Does your robot always complete the skills you programmed? If not, what are the most common sources of error?
How long does it take for the robot to complete the model acquisition task for each of the two objects you used? Can
these running times be improved? If so, how, and what might the trade-offs be, if any?
Deliverables: Your report on the Wiki should include a brief description of your procedure, the dimensions of the
obstacles you used, answers to the questions above, your error plots and screenshots, the velocities you used to drive
the robot in a circle, and a detailed discussion of the alternative termination methods you considered, the one you
implemented, and why. Be prepared to demonstrate your entire model acquisition behavior at the start of the next lab.
Also, somewhere on your Wiki you should include your FSM with all transitions and states.

A Appendix: Lines in the Plane

We can represent any line in the plane as the locus of points (x, y) which satisfy the equation

ax+ by + c = 0 (1)

where (a, b, c) are three parameters (constants) which define the position and orientation of the line. We require that
not all three of the parameters are simultaneously zero, since if that were true then all (x, y) would trivially satisfy (1).
This implies that it can not even be the case that a = b = 0, since then c would have to be non-zero, and no point
(x, y) could satisfy (1).
As a geometric object, a line in the plane actually has only two degrees of freedom (DoF). There are many ways to
define these, for example

9

• slope and y intercept (what happens when line is vertical?)

• slope and x intercept (what happens when line is horizontal?)

• x intercept and y intercept (what happens when line is either vertical or horizontal?)

• angle with respect to x-axis (which angle, precisely?) and perpendicular distance from origin

• etc.

As you can see, many of the possible ways to define them have issues in certain cases. We’d of course like to avoid
such situations as much as possible, since we would like to be able to represent any line without failure.
Moreover, we started by defining the line according to equation (1), which has three parameters, not two. There must
be some redundancy among those three parameters. It turns out that we can add an algebraic constraint among the
parameters which reduces their effective DOF to two:

a2 + b2 = 1. (2)

So now (a, b, c) define a line according to (1) iff (2) holds. Or, said in a more useful way, if you are given any triple
of parameters (a′, b′, c′), not all zero, as described above, but not necessarily satisfying (a′)2 + (b′)2 = 1, you can
simply compute a new set (a, b, c) of parameters for the same line:

ln :=
√
a2 + b2 (:= means “defined as”)

and then
a = a′/ln b = b′/ln c = c′/ln.

This will always be possible because ln can only be zero if both a and b are zero. To see that this procedure does not
change the line, think of it as dividing the entire equation of the line by ln.
Now we can always be sure that (2) holds, so the DoF of the parameter space (three parameters - one constraint = two
DoF) matches the DoF we expect to see for a line. Further, this particular constraint is convenient because it confers a
straightforward geometric meaning to the parameters (a, b, c). To see it, rewrite equation (1) in vector form:

n := (a, b)

p := (x, y)

n · p+ c = 0. (3)

Constraint (2) ensures that n is actually a unit vector. So, recalling that the dot product of a vector with a unit vector
returns the length of the component of the first vector in the direction of the second, we can interpret (3) to mean that
p is on the line iff its component in the direction of n has length −c. Since c is fixed for all p, it turns out that this
geometrically means that n is the unit normal to the line, and c is the (signed) distance from the origin to the line in
the opposite direction of n. The unit normal n may either point towards the line from the origin, in which case c will
be negative, or n will point away from the line, in which case c will be positive–the math holds either way.

A.1 Perpendicular Distance from a Point to a Line

Our parametrization, combined with constraint (2), is even more convenient because it gives a very simple formula
for the perpendicular (i.e. shortest) distance from any arbitrary point q in the plane to the line. Again we use the dot
product to find the length of the component of q in the direction of n. The difference between −c and this product
will be the signed perpendicular distance d from q to the line (a, b, c), in the direction of n:

d = −c− n · q (4)

Note that as long as (2) holds the absolute value of d is the same as the absolute value of the expression to the left of
the equal sign in (1), i.e.

|d| = |ax+ by + c| (5)

where q = (x, y), which makes sense—points on the line have zero distance from the line.

10

A.2 Fitting a Line to a set of Points with Least-Squares

If you are given a set of points in the plane (xi, yi), at least two of them distinct, it may make sense to try to find
a line (a, b, c) which somehow best fits the points. There are different ways to define the definition of “fit”. It turns
out that one particularly convenient way is to define an error term for each point which increases in absolute value in
proportion to the perpendicular distance from that point to the fit line, and then find the line which minimizes the sum
of the squares of these error terms.
We will not provide a derivation or justification for this process here2, but we will give you the bottom line (ahem...):
a set of equations which you can use to compute (a, b, c) parameters of the best-fit line.
It’s unfortunately a bit more complex to directly find the best-fit (a, b, c) which also satisfy the above constraint (2),
so instead we’ll use a simpler constraint

c = −1. (6)

for this computation. After the best-fit parameters are computed, you may of course use ln as above to compute a new
triple of parameters for the best-fit line which satisfy (2).
(6) has already given us the value of one of the three parameters of the best-fit line. The other two may be computed
like this:

X :=
∑
i

xi Y :=
∑
i

yi X2 :=
∑
i

x2i Y2 :=
∑
i

y2i Z :=
∑
i

xiyi

D := X2Y2 − Z2 (7)

a =
XY2 − Y Z

D
(8)

b =
Y X2 −XZ

D
(9)

As you implement this, note that the computation will be numerically ill-conditioned if D is near zero, which will
occur if you have fewer than two distinct points, and also potentially in other situations. One way to handle this is to
compute D first, check whether it is very close to zero, and if so, to skip this fit-line update (i.e. to continue using the
previously-computed fit line parameters, if any).

2If you are really interested (and we hope you are!), read about the Moore-Penrose Pseudoinverse, which is the general least-squares linear
system solution method upon which the following equations are based.

11

	Software and Development Environment Preliminaries
	Incorporate the Bump and Sonar Sensor Hardware
	Characterize your Sensors
	Getting More Sensor Data
	Collision Detection Using Bumpers
	Robot Alignment Using Bumpers
	Checkpoint 1
	Sonar Calibration and Data Segmentation
	Modeling the Obstacle

	Wall Following
	Finding the Start of the Wall
	Following the Wall
	Measuring Performance

	Checkpoint 2
	Model Acquisition
	Appendix: Lines in the Plane
	Perpendicular Distance from a Point to a Line
	Fitting a Line to a set of Points with Least-Squares

