6.141:

Robotics systems and science
Lecture 13: Grasping and Manipulation
Lecture Notes Prepared by Daniela Rus and Seth Teller

EECS/MIT
Spring 2011

Reading: Chapter3, Craig: Robotics
http://courses.csail.mit.edu/6.141/
Challenge: Build a Shelter on Mars

Last 2 modules were about

- High-level planning
- Localization
- Challenge

Today

- Intro to debates
- Robot grasping
- Reading: chapters 3, 6

Debates

- Posted tomorrow on the Web, Pick topic by emailing
kbates@csail.mit.edu by Friday April 2
- Debates shall be organized as follows:
- Constructive Speeches: Affirmative: 7 min Negative: 7 min
- Rebuttal Speeches: Affirmative: 3 min Negative: 3 min
- Discussion and Cross-Examination (4 minutes).
- When debating in teams, the constructive and rebuttal presentations may be shared by the team members.
- Time will be kept using the briefing timer.
- Do not argue by authority, use technical arguments
- Rules of Evidence

In debate, source citations of evidence must be stated the first time a source is used.

- Rules of Evidence Authenticity
- Evidence must not be fabricated or distorted.
- Fabrication means falsely representing a cited fact or statement of opinion as evidence; or intentional omission/addition of information within quoted material.
- Distortion means misrepresentation of evidence or of citation which significantly alters meaning.

What is Manipulation?

- Hayes, K.C. and Hayes, C.

Grasping and Manipulation

Fixturing

- Use of designed pegs, surfaces, prior knowledge of manipuland geometry to achieve desired pose

Manipulation by Pushing

- Stable push:
- Motions that keep object in line contact w/ manipulator

- Motion planning, but with additional constraints

Soft-finger Manipulation

- Can exploit visual/tactile sensing \& feedback

Obrero / MIT

Mobile, Two-handed Manipulation

- Challenges: mass distribution; uncertainty

uBot / UMass Amherst

Mobility and Manipulation

- Mobility:
- Earth is fixed
- Legs apply forces to earth
- Forces move body

- Manipulation:
- Body is fixed to earth
- Arms apply forces to manipuland
- Forces move manipuland
- Goal of Field: Mobile Manipulation
- Use of limbs in concert to effect coordinated motion of body, limbs, and manipuland
- Examples: Lifting a sandbag, throwing a baseball, shoveling snow, replacing a ceiling smoke detector

Robot Hands

- End-effectors are the part of the robot that usually does manipulation
- Many designs...

Problems

How does the robot reach for the object?
How does the robot grab the object? How does the robot move the object?

Grasping

- Using end-effectors (fingers) to immobilize something relative to the hand
- Issues:

- What contacts?
- Where to place the contact points?
- What grasp properties?

Grasp Types

- Force closure: fingers resist any external force
- Torque closure: fingers resist any external torque
- Equilibrium: the contact forces can balance the object weight and external forces

Finger types

- Point contact with friction
- Hardfinger Contact
- Softfinger Contact

Issues in Grasp Design

- Existence: given an object and constraints determine if closure exist
- Analysis: given an object and contacts determine if closure applies
- Synthesis: given an object, find contacts that result in closure

Existence

- Given an object, does it have a force-closure grasp?
- Theorem1 (Mishra, Schwartz, Sharir): for any bounded object that is not a surface of revolution a force closure grasp exists
- Theorem2 (Mishra, Schwartz, Sharir): at most 6 fingers in 2d, 12 fingers in 3d

Frictionless Point Contacts

- Force must be normal to object boundary (why?)
- Force must point into object's interior

Force-Direction Closure

- Under what conditions will a set of point contact forces resist arbitrary planar translation?
... What's going on?

How many contacts are needed?

- Analyze situation in c-space with DOF argument
- First: how many c-space DOFs for object origin?

Cartesian space

How many contacts are needed?

- Analyze situation in c-space with DOF argument
- What does a Cartesian point contact imply in c-

Cartesian space

How many contacts are needed?

- Analyze situation in c-space with DOF argument
- What does a Cartesian point contact imply in c-

How many contacts are needed?

- Analyze situation in c-space with DOF argument
- What does a Cartesian point contact imply in c-

Cartesian space

Configuration space

DOF Counting for Translation

- Conclude that contacts are needed in general
- Are there situations in which more are required?

- Example of geometric

Conditions for Force-Direction Closure

- Force vectors must
- Some positive combination of forces

For force vectors $\mathbf{p}, \mathbf{q}, \mathbf{r}$,
there must exist $\alpha, \beta, \gamma>0$
s.t.

Synthesizing a Force-Direction Grasp

1. Choose
admitting a
2. Project onto each contact edge
3. Scale force magnitudes to produce

Torque Closure

- Under what conditions will a set of point contact forces resist arbitrary planar rotations?

How many contacts to pin rotation?

- Use analogous DOF argument in c-space
- First: how many c-space DOFs for object pose?

Cartesian space

Configuration space

How many contacts to pin rotation?

- Introduce point contact in Cartesian space
- Implies c-space constraint with 2D manifold boundary

Cartesian space

How many contacts to pin rotation?

- Introduce point contact in Cartesian space
- Implies c-space constraint with 2D manifold boundary

Cartesian space

How many contacts to pin rotation?

- Locally, each constraint has a planar boundary
- ... So, how many halfspaces needed to pin point?

Cartesian space

Configuration space

Grasp Analysis (no friction)

- Force-direction closure Translate forces to O; they compose to generate any desired resultant force

- Torque closure

Translate forces to intersection Points; they can be adjusted to point at each other and away from each other to generate torque

Geometric Conditions for Torque Closure

- Each normal cone must contain the other's apex
- Pairwise effective forces must cancel each other

Algebraic condition? For force vectors $\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}, \mathbf{f}_{\mathbf{3}}, \mathbf{f}_{\mathbf{4}}$ force vectors exist $\alpha, \beta, \gamma, \delta>0$ s.t.

lother

Grasp Synthesis

- Frictionless fingers
locus of points that project onto the grasping edges

Grasp Synthesis

- Frictionless fingers
locus of points that project onto the grasping edges

Pick P1 in blue region and P2 in pink region so that the line P1P2 has direction contained in the intersecting normal cones

Grasp Synthesis
 - Frictionless fingers

Project P1 and P2 to form grasping points f1, f2, f3, f4

Synthesizing a Torque-Closure Grasp

1. Choose two edge pairs* admitting force centers
2. Choose centers inducing mutual normal cones
3. Project centers to respective edge contact points
4. Scale forces to produce alignment, cancellation
*Edge pairs need not be contiguous

Does rotation closure imply translation closure?

Point Contact with Friction

- Consider a point contact exerting force at some angle θ to the surface normal. What happens?

$$
\theta_{\text {crit }}=\tan ^{-1} \mu
$$

Surface

- Produces a
of force directions

Grasp Synthesis with Friction

- Pick f1 and valid green direction
- Intersect with edge to get f2

Grasp Analysis With Friction

Consider forces $\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}$ at frictional contacts $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}$

When can $\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}$ oppose one another without sliding?
Each force must Point $\mathbf{p}_{\mathbf{1}}$ (resp. $\mathbf{p}_{\mathbf{2}}$) must

Grasp Synthesis With Friction

Choose a compatible pair of edges $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}$
Intuition? Using what data? How to choose?

Grasp Synthesis (regions)

- f2 placement has error ε
- f2 can point to any force in pink region

Grasp Synthesis (regions)

- But if we put f1 in the pink region, which points in the blue region can point to it?

Grasp Synthesis (friction)

- 2 Finger Forces have to be within friction cones to stick
- 2 Finger Forces have to point at each other
- So...
- We need to find 2 edges with overlapping friction cones

Grasp Synthesis With Friction

Choose target region for contact point $\mathbf{p}_{\mathbf{1}}$
Determine feasible target region for contact $\mathbf{p}_{\mathbf{2}}$
Orient and scale $\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}$ so as to cancel along $\overline{\mathbf{p}_{\mathbf{1}} \mathbf{p}_{\mathbf{2}}}$

Example: 6.141 robot

What is Robot Manipulation?

Space - in-orbit, repair and maintenance, planetary exploration anthropomorphic design facilitates collaboration with humans

Home - basic science - manufacturing, logistics, automated warehousing and distribution, computational models of cognitive systems, learning, human interfaces

Assistive - clinical applications, "aging-in-
 place," physical and cognitive prosthetics in assisted-living facilities

Military - supply chain and logistics support, re-fueling, bomb disposal

Kinetic and Static Friction ("Stiction")

$\mathrm{F}_{\mathrm{f}}<=\mu_{\mathrm{s}} * \mathrm{~F}_{\mathrm{n}}$ (at rest): coefficient of static friction μ_{s}
 $\mathrm{F}_{\mathrm{f}}<=\mu_{\mathrm{k}} * \mathrm{~F}_{\mathrm{n}}$ (moving): coefficient of kinetic friction μ_{k}

(Stiction makes things difficult both for humans and robots. Why?)

Point Contact with Friction

- Consider a point contact exerting force at some angle θ to the surface normal. What happens?

For contact at rest, $\left|F_{\mathbf{t}}\right|<\left|\mathbf{F}_{\mathbf{f}}\right|=\mu\left|\mathbf{F}_{\mathbf{n}}\right|$
At critical angle $\theta_{\text {crit }}$
$\left|F_{t}\right|=$
Substituting gives
$|\mathbf{F}| \sin \theta_{\text {crit }}=$
Which yields
$\mu=$
So that
$\theta_{\text {crit }}=$

- Produces a
of force directions

Are There Degeneracies?

- Polygon with sides not in general position...
. But what about circles ?

Cartesian space
Cartesian space

- For polyhedra in 3D: need
- Frictionless contacts cannot pin

Rotation Center (RC)

- Consider finite planar displacement of rigid object
- Some point in the plane is left fixed by displacement
- This point is called the "rotation center" (RC)
- What if the displacement is a pure translation?
- Where is the RC?

Instantaneous Center (IC):

- Consider a differential displacement (i.e. velocity)
- Displacement still has a fixed point; where is it?
- What if the displacement is a pure translation?
- Where can the IC lie?

Arm Control to Reach

- Mechanism design
- Forward kinematics
- Inverse kinematics

Kinematic Mechanisms

Link: rigid body Joint: constraint
 on two links Kinematic mechanism: links and joints

Cylindrical
2 freedoms

The Planar 3-R manipulator

- Planar kinematic chain
- All joints are revolute

Kinematic modeling

- Link
- Actuated joint
- End effector (EE)
- Reference point on EE_{y}
- Joint coordinates $\theta_{1}, \theta_{2}, \theta_{3}$

- End effector coordinates

$$
x, y, \phi
$$

- Link lengths (l_{i})

Kinematic transformations

- Direct kinematics
- Joint coordinates to end effector coordinates
- Sensors are located at the joints. DK algorithm is used to figure out where the robot is in 3-D space.
- Robot "thinks" in joint coordinates. Programmer/ engineer thinks in "world coordinates" or end effector coordinates.
- Inverse kinematics
- End effector coordinates to joint coordinates
- Given a desired position and orientation of the EE, we want to be able to get the robot to move to the desired goal. IK algorithm used to obtain the joint coordinates.
- Essential for control.

Direct kinematics

Inverse kinematics

$$
\begin{aligned}
& x=l_{1} \cos \theta_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right)+l_{3} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \\
& y=l_{1} \sin \theta_{1}+l_{2} \sin \left(\theta_{1}+\theta_{2}\right)+l_{3} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \\
& \phi=\left(\theta_{1}+\theta_{2}+\theta_{3}\right) \quad \text { Given } x, y, \phi, \text { solve } \\
& \quad \text { for } \theta_{1}, \theta_{2}, \theta_{3}
\end{aligned}
$$

Inverse kinematics has multiple solutions

Which is the correct
robot pose ?

Kinematics Summary

Robot kinematic calculations deal with the relationship between joint positions and an external fixed Cartesian coordinate frame.
Dynamics, force, momentum etc. are not considered.

Pushing

- Straight-line motion

Pushing

- Clockwise rotation

Pushing

- Counter-clockwise rotation

Pushing

- Robust translation

What if we do not know where the center of mass is?

Pushing

- Robust translation

Push and sense: if clockwise rotation, move right if counterclockwise rotation move left

Grasping and manipulation summary

- Reaching: forward and inverse kinematics
- Grasping: analysis and synthesis of closure grasps
- Manipulation: prehensile and nonprehensile

Another Example

Research prototype (BARM, YARM) developed by Stanford University (1960's)

Kinematic modeling

- Link
- Actuated joint
- End effector (EE)
- Reference point on EE
- Joint coordinates

$$
\theta_{1}, d_{2}
$$

RP manipulator

- End effector coordinates
x, y, ϕ

Inverse kinematics

Transform end effector coordinates to joint coordinates

$$
\begin{aligned}
& x=d_{2} \cos \theta_{1} \\
& y=d_{2} \sin \theta_{1} \\
& \phi=\theta_{1}
\end{aligned}
$$

Given x, y, solve for θ_{1}, d_{2}

Inverse kinematics

$$
\begin{aligned}
& x=d_{2} \cos \theta_{1} \\
& y=d_{2} \sin \theta_{1}
\end{aligned}
$$

- Given x, y, solve for θ_{1}, θ_{2}

Solution

$$
\begin{aligned}
& d_{2}=+\sqrt{x^{2}+y^{2}} \\
& \theta_{1}=\tan ^{-1}\left(\frac{y}{x}\right)
\end{aligned}
$$

Inverse kinematics

$$
\begin{aligned}
& x=d_{2} \\
& y=d_{1}
\end{aligned}
$$

- Given x, y, solve for d_{1}, d_{2}
- Direct and inverse kinematics are trivial
- Only one solution
- Equations are linear
- No trigonometric functions
- Popular geometry
- CNC machines

- Gantry robots
- Plotters, special-purpose transfer devices

Grasp Analysis (no friction)

- Force-direction closure

Grasp Analysis (no friction)

- Force-direction closure

- Torque closure

How do we turn this into an algorithm for grasping?

- Locus of A1
- Locus of A2
- Legal directions between A1 and A2
- Then
- Pick a line
- Convert to A1, A2,
- Project to get grasping points

Grasp Analysis (friction)

- With friction: f1 within friction cone--stick \& f1 outside friction cone--slide

Forces must be pointed at each other
If blue force is anywhere within pink cone pink force can be pointed at it; can the blue force be pointed at pink force?

Grasp Analysis (friction)

- With friction (stick vs slide)
 If blue force is outside pink cone pink force can not be pointed at it because it will start slipping

