6.141:

Robotics systems and science Lecture 11: Localization

Lecture Notes Prepared by Daniela Rus and Seth Teller EECS/MIT
Spring 2011
Reading: Chapter 3, and Craig: Robotics
http://courses.csail.mit.edu/6.141/
Challenge: Build a Shelter on Mars

Announcements

- Today's Lab Reports: each team member talks about the technical piece he/she executed

Last week we saw

- Configuration Space
- Motion Planning

Today

- Localization: Where am I?

Navigation Overview

- Where am I?
- Localization (Today)
- Assumes perfect map, imperfect sensing
- How can I get there from here?
- Planning (Last Week)
- Assumes perfect map, sensing, and actuation
- What have I observed in my travels?
- Mapping (Later)
- Assumes perfect localization
- Can I build map and localize on-line?
- Yes; using SLAM (Later is Time Permits)
- Assumes no prior knowledge of the world

Thought experiment

- Does it make sense to localize in a void (an environment containing absolutely nothing)?
... not very interesting; We conclude that there has to be some kind of "stuff" in environment
- What if the environment is isotropic (space, fog, water, desert, jungle etc.)?
... again, not very interesting for robot to move or perform tasks within such an environment

We conclude that environment must contain features that can be sensed (distinguished) by bot

Localization Problem Statement

- Given some representation of the environment, to localize, robot must, through sensing, determine its pose with respect to the specified representation
- Defined with respect to some frame or feature set that is external to robot:
- Global coordinate frame
- E.g., GPS (Earth) coordinates
- Local coordinate frame
- Ceiling or floor tiles
- Mission starting pose
- Environment features
- E.g., nearby walls, corners, markings

Basic Localization

- Open-loop pose estimation:
- Maintain pose estimate based on expected results of motion commands (no sensing)
- Dead reckoning:
- Use proprioception (odometry, inertial) to estimate pose w.r.t. initial coordinate frame
- Multiple error sources:
- Wheel slip, gear backlash
- Noise (e.g. from encoders)
- Sensor, processor quantization errors
- Pose error accumulates with time and motion
- Typically ~ a few percent of distance traveled

Dead Reckoning Error

- Two hours of slow, rolling motion through MIT main campus corridors at third-floor level
- Bosse, Leonard, Newman, Teller (IJRR 2004)
- High-precision inertial sensors exist... do they solve problem?

True path topology
(manually drawn and overlaid)

Integrated odometry
(Nomadics B21)

Landmark Attributes

- Is landmark passive or active?
- Must sensor emit energy to sense landmark?
- Is landmark natural or artificia?
- If placed in env't, how are locations chosen?
- Which sensor(s) can detect it?
- Vision, sonar, radio, tactile, chemical, ...
- What are landmark's geometric properties?
- Plane, line, segment, point, diffuse source, ...
- What is discriminability of landmark?
- (Will discuss this in detail in a minute)

Landmark Types

 PassiveActive

	Wall corner Texture patch River bend Earth's surface	Sun, North star Magnetic dipole Pressure gradient Mineral vent
Artificial	Surveyor's mark Retro-reflector Lighthouse (day) Trail blaze Buoy, channel marker	Chemical marker Radio beacon Lighthouse (night) LORAN GPS

Types of Measurements

- Range to surface patch, corner
- Sonar return
- Bearing (absolute, relative, differential)
- Compass; vision (calibrated camera)
- Range to point
- RSS, TOF from RF/acoustic beacon
- Cricket (TDoA of acoustic \& RF pulse)
- Range and (body-relative) bearing to object
- Radar return
- Laser range scanner return
- Vision (stereo camera rig)
- Distance to sea surface, floor
- Pressure (depth), bathymetry (depth, altitude)

Discriminability Challenges

- Landmark Detection
- Is landmark distinguishable from background?
- Landmark Measurement, Data Fusion
- Sensor gives a noisy, quantized measurement of landmark geometry (bearing and/or range)
- How accurately can a measurement localize a landmark?
- How can multiple corrupted measurements be combined into one accurate localization estimate of a landmark?
- Landmark Identification
- To which element of representation (i.e., map) does the detected and measured landmark correspond?
- To which previously-observed landmark (if any) does the currently observed landmark correspond?
- Also known as the "data association" or "feature correspondence" or "matching" problem

Localization Degrees of Freedom

- Model robot/vehicle as a single rigid body
- Aerial, orbital, underwater navigation
- 6 DOFs: three position + three orientation
- Terrestrial operation (rolling, walking)
- 3 DOFs: two position + one orientation
- Used for planar, mildly non-planar terrain
- Underwater surveying (high C. O. B.)
- 4 DOFs: three position + one orientation

Localization Scenarios

- Estimating location in 2D
- From measured ranges (distances)
- From measured bearings (directions)
- We'll look at noiseless, noisy cases

Triangulation

- Natural geometry for 2D localization
- Simplest framework combining range, bearing
- Used by Egyptians, Romans for engineering

Triangulation from range data

- Robot at unknown position \mathbf{P} measures distances $\mathrm{d}_{1}, \mathrm{~d}_{2}$ to known landmarks $\mathbf{L}_{1}, \mathbf{L}_{2}$
- Given $\mathrm{d}_{1}, \mathrm{~d}_{2}$, what are possible values of \mathbf{P} ?

Triangulation from range data - Robot must lie on circles of radius $\mathrm{d}_{1}, \mathrm{~d}_{2}$ centered at $\mathbf{L}_{1}, \mathbf{L}_{2}$ respectively

Triangulation from range data

- Change basis: put \mathbf{L}_{1} at origin, \mathbf{L}_{2} at $(a, 0)$

(Try e.g. setting $d_{1}=a, d_{2}=0$)

$$
\begin{aligned}
& x=\left(a^{2}+d_{1}^{2}-d_{2}^{2}\right) / 2 a \\
& y= \pm \sqrt{\left(d_{1}^{2}-x^{2}\right)}
\end{aligned}
$$

Are we done?

Triangulation from range data

- Two solutions in general, P and P^{\prime}
- How to select the correct solution?

Disambiguating solutions

- A priori information (richer map)

Disambiguating solutions

- Continuity (i.e., spatiotemporal information)

Disambiguating solutions

- Additional landmarks (redundancy)

Triangulation from range data

- Are we done yet, i.e., is pose fully determined?
- No: absolute heading is not determined

- How to get heading?
- Motion (difference of positions inferred across time)
- Extent (using two ranges measured over ship baseline)

Triangulation from bearing data

- Body-relative bearings to two landmarks
- Bearings measured relative to "straight ahead"

Robot observes:
L_{1} at bearing θ_{1}
L_{2} at bearing θ_{2}

... are two bearings enough for unique localization?

Triangulation from two bearings

- Robot somewhere on circular arc shown
- Can it be anywhere on circle?
(No; ordering constraint)

Triangulation from bearing data

- Measure bearing to third landmark
- Yields robot position and orientation
- Also called robot pose (in this case, 3 DoFs)

Measurement Uncertainty

- Ranges, bearings are typically imprecise
- Range case (estimated ranges $\sim d_{1}, \sim d_{2}$)

Measurement Uncertainty

- Two-bearing case (estimated bearings $\sim \theta_{1}, \sim \theta_{2}$)
- What is locus of recovered vehicle poses?
- Solve in closed form? Is there an alternative?

Measurement Uncertainty

- Bearing case (measurements $\sim \theta_{1}, \sim \theta_{2}, \sim \theta_{3}$)

Landmark, sensor geometry

- Consider off-axis and near-axis bearing measurements to two known landmarks
(simplification: assume absolute heading is known)

Dilution of Precision

- General phenomenon that sensor, landmark, and motion geometry can degrade solution quality, even for a
fixed set of observed landmarks
- Geometric DOP = GDOP
- Also Vertical DOP, Horizontal DOP etc.
- How to take GDOP into account?
- If sufficiently many landmarks are available, select those with minimal GDOP
- Decouple pose, solve separately, recombine

To Think About: RSS Challenge

- Will your challenge solution rely on localizing within the provided map?
- Can solve challenge with or without localization
- Decide early, as choice has significant implications
- Source 1: colored blocks
- Placed at known map locations, but ID may not be available
- Source 2: colored balls
- Placed at known map locations, in unique color combinations
- Source 3: sonar returns
- Range data from 2 (or 4, if you choose) sonars on chassis

To Think About: Localization

- Suppose robot sonars return four (noisy) range measurements $\left\{\mathrm{d}_{\mathrm{F}, \mathrm{B}, \mathrm{L}, \mathrm{R}}\right\}$ as shown
- What robot poses are consistent with data?
- How might you identify them efficiently?

To Think About: Localization

- Below is one solution
- If data are noiseless, is solution unique?
- If data are noisy, is solution unique?

Localization With Noisy Ranges (with D. Moore, J. Leonard, S. Teller)

Complications of Noise

- Small measurement errors due to noise lead to large localization errors
- Example: flip ambiguity from noise

- Small error in CD leads to large position error of D

The Robust Quadrilateral

- Consider this graph:
. Robustness characteristics:

- Rigid (no continuous deformations)
- No discontinuous flex ambiguities (by Laman's Theorem)
- We probabilistically constrain it to minimize the likelihood of a flip ambiguity
- We call it a robust quadrilateral
- A graph constructed from overlapping robust quads will itself possess the robustness characteristics

Trilateration w/ Robust Quads

- If three nodes of a quad have known position, fourth can be computed with trilateration

- Quads can be "chained" in this manner

Our algorithm

Starting cluster w/ distance measurements

Choose two neighboring nodes for initial robust triangle

Our algorithm (cont.)

Cluster localization complete

2-D Beacons from 1-D Ranging

- Demo: "Cricket" RF / acoustic beacons
- Pairwise ranging from TDoA of pulse pair, ranging $\sigma_{r} \sim 3 \mathrm{~cm}$
- End-to-end beacon localization with position error $\sigma_{x y} \sim 5 \mathrm{~cm}$

Localizing the "left-over" nodes

Robot broadcasts locations

Robot broadcasts locations

Robot broadcasts locations

