#### 6.141: Robotics systems and science Lecture 11: Localization

#### Lecture Notes Prepared by Daniela Rus and Seth Teller EECS/MIT Spring 2011 Reading: Chapter 3, and Craig: Robotics <u>http://courses.csail.mit.edu/6.141/</u>

Challenge: Build a Shelter on Mars

#### Announcements

 Today's Lab Reports: each team member talks about the technical piece he/she executed

#### Last week we saw

- Configuration Space
- Motion Planning

#### Today

Localization: Where am I?

## **Navigation Overview**

- Where am I?
  - Localization (Today)
  - Assumes perfect map, imperfect sensing
- How can I get there from here?
  - Planning (Last Week)
  - Assumes perfect map, sensing, and actuation
- What have I observed in my travels?
  - Mapping (Later)
  - Assumes perfect localization
- Can I build map and localize on-line?
  - Yes; using SLAM (Later is Time Permits)
  - Assumes no prior knowledge of the world

#### Thought experiment

Does it make sense to localize in a void (an environment containing absolutely nothing)?

... not very interesting; We conclude that there has to be some kind of "stuff" in environment

What if the environment is *isotropic* (space, fog, water, desert, jungle etc.)?

... again, not very interesting for robot to move or perform tasks within such an environment

We conclude that environment must contain *features* that can be sensed (distinguished) by bot

#### **Localization Problem Statement**

- Given some representation of the environment, to *localize*, robot must, through sensing, determine its pose *with respect to the specified representation*
- Defined with respect to some frame or feature set that is *external* to robot:
  - Global coordinate frame
    - E.g., GPS (Earth) coordinates
  - Local coordinate frame
    - Ceiling or floor tiles
    - Mission starting pose
  - Environment features
    - E.g., nearby walls, corners, markings

## **Basic Localization**

- Open-loop pose estimation:
  - Maintain pose estimate based on expected results of motion commands (no sensing)
- Dead reckoning:
  - Use proprioception (odometry, inertial) to estimate pose w.r.t. *initial* coordinate frame
  - Multiple error sources:
    - Wheel slip, gear backlash
    - Noise (e.g. from encoders)
    - Sensor, processor quantization errors
  - Pose error accumulates with time and motion
  - Typically ~ a few percent of distance traveled

#### **Dead Reckoning Error**

- Two hours of slow, rolling motion through MIT main campus corridors at third-floor level
  - Bosse, Leonard, Newman, Teller (IJRR 2004)
- High-precision inertial sensors exist... do they solve problem?



#### Landmark Attributes

- Is landmark *passive* or *active*?
  - Must sensor emit energy to sense landmark?
- Is landmark natural or artificial?
  - If placed in env't, how are locations chosen?
- Which sensor(s) can detect it?
  - Vision, sonar, radio, tactile, chemical, ...
- What are landmark's geometric properties?
  - Plane, line, segment, point, diffuse source, …
- What is *discriminability* of landmark?
  - (Will discuss this in detail in a minute)

| Landmark Types<br>Passive |                                                                                               | Active                                                                  |
|---------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Natural                   | Wall corner<br>Texture patch<br>River bend<br>Earth's surface                                 | Sun, North star<br>Magnetic dipole<br>Pressure gradient<br>Mineral vent |
| Artificial                | Surveyor's mark<br>Retro-reflector<br>Lighthouse (day)<br>Trail blaze<br>Buoy, channel marker | Chemical marker<br>Radio beacon<br>Lighthouse (night)<br>LORAN<br>GPS   |

## **Types of Measurements**

- Range to surface patch, corner
  - Sonar return
- Bearing (absolute, relative, differential)
  - Compass; vision (calibrated camera)
- Range to point
  - RSS, TOF from RF/acoustic beacon
  - Cricket (TDoA of acoustic & RF pulse)
- Range and (body-relative) bearing to object
  - Radar return
  - Laser range scanner return
  - Vision (stereo camera rig)
- Distance to sea surface, floor
  - Pressure (depth), bathymetry (depth, altitude)

#### **Discriminability Challenges**

- Landmark *Detection* 
  - Is landmark distinguishable from *background*?
- Landmark *Measurement, Data Fusion* 
  - Sensor gives a noisy, quantized measurement of landmark geometry (bearing and/or range)
  - How accurately can a measurement localize a landmark?
  - How can multiple corrupted measurements be combined into one accurate localization estimate of a landmark?

#### Landmark *Identification*

- To which element of *representation* (i.e., map) does the detected and measured landmark correspond?
- To which *previously-observed landmark* (if any) does the currently observed landmark correspond?
- Also known as the "data association" or "feature correspondence" or "matching" problem

#### Localization Degrees of Freedom

- Model robot/vehicle as a single rigid body
- Aerial, orbital, underwater navigation
  - 6 DOFs: three position + three orientation
- Terrestrial operation (rolling, walking)
  - 3 DOFs: two position + one orientation
  - Used for planar, mildly non-planar terrain
- Underwater surveying (high C. O. B.)
  - 4 DOFs: three position + one orientation







WHOI AUV, Hanu Singh (Aug. 2004)

#### **Localization** Scenarios

- Estimating location in 2D
  - From measured ranges (distances)
  - From measured *bearings* (directions)
  - We'll look at noiseless, noisy cases

#### Triangulation

- Natural geometry for 2D localization
  - Simplest framework combining range, bearing
  - Used by Egyptians, Romans for engineering



#### Triangulation from range data

- Robot at unknown position P measures distances
  d<sub>1</sub>, d<sub>2</sub> to known landmarks L<sub>1</sub>, L<sub>2</sub>
- Given d<sub>1</sub>, d<sub>2</sub>, what are possible values of **P**?



# Triangulation from range data Robot must lie on circles of radius d<sub>1</sub>, d<sub>2</sub> centered at L<sub>1</sub>, L<sub>2</sub> respectively



#### Triangulation from range data

Change basis: put L<sub>1</sub> at origin, L<sub>2</sub> at (a,0)



#### Triangulation from range data

- Two solutions in general, P and P'
- How to select the correct solution?



#### **Disambiguating solutions**

#### A priori information (richer map)



#### **Disambiguating solutions**

Continuity (i.e., spatiotemporal information)



#### **Disambiguating solutions**

Additional landmarks (redundancy)



#### Triangulation from range data

- Are we done yet, i.e., is pose fully determined?
- No: absolute heading is *not determined*



- How to get heading?
  - Motion (difference of positions inferred across time)
  - Extent (using two ranges measured over ship baseline)

#### Triangulation from bearing data

- Body-relative bearings to two landmarks
  - Bearings measured relative to "straight ahead"



... are two bearings enough for unique localization?

#### Triangulation from two bearings



- Robot somewhere on circular arc shown
  - Can it be *anywhere* on circle?

(No; ordering constraint)

#### Triangulation from bearing data

- Measure bearing to third landmark
  - Yields robot position and orientation
  - Also called robot pose (in this case, 3 DoFs)



#### **Measurement Uncertainty**

- Ranges, bearings are typically *imprecise*
- Range case (estimated ranges ~d<sub>1</sub>, ~d<sub>2</sub>)



## Measurement Uncertainty Two-bearing case (estimated bearings ~θ<sub>1</sub>, ~θ<sub>2</sub>)

- What is *locus* of recovered vehicle poses?
- Solve in closed form? Is there an alternative?



# Measurement Uncertainty Bearing case (measurements ~θ<sub>1</sub>, ~θ<sub>2</sub>, ~θ<sub>3</sub>)



#### Landmark, sensor geometry

 Consider off-axis and near-axis bearing measurements to two known landmarks (simplification: assume absolute heading is known)



#### **Dilution of Precision**

- General phenomenon that sensor, landmark, and motion geometry can *degrade* solution quality, even for a *fixed set* of observed landmarks
- Geometric DOP = GDOP
  - Also Vertical DOP, Horizontal DOP etc.
- How to take GDOP into account?
  - If sufficiently many landmarks are available, *select* those with minimal GDOP
  - Decouple pose, solve separately, recombine

#### To Think About: RSS Challenge

- Will your challenge solution rely on localizing within the provided map?
  - Can solve challenge with or without localization
  - Decide early, as choice has significant implications
- Source 1: colored blocks
  - Placed at known map locations, but ID may not be available
- Source 2: colored balls
  - Placed at known map locations, in unique color combinations
- Source 3: sonar returns
  - Range data from 2 (or 4, if you choose) sonars on chassis



#### To Think About: Localization

 Suppose robot sonars return four (noisy) range measurements {d<sub>F,B,L,R</sub>} as shown

d<sub>Left</sub>

Right

Front

- What robot *poses* are consistent with data?
- How might you identify them *efficiently*?



#### To Think About: Localization

- Below is one solution
  - If data are noiseless, is solution unique?
  - If data are noisy, is solution unique?





#### Localization With Noisy Ranges (with D. Moore, J. Leonard, S. Teller)



- Characteristics:
  - Robust against noise
  - No beacons
  - Handles mobility

## **Complications of Noise**

- Small measurement errors due to noise lead to large localization errors
- Example: **flip ambiguity** from noise



Small error in CD leads to large position error of D

#### The Robust Quadrilateral

• Consider this graph:

- Robustness characteristics:
  - Rigid (no continuous deformations)
  - No discontinuous flex ambiguities (by Laman's Theorem)
  - We probabilistically constrain it to minimize the likelihood of a flip ambiguity
- We call it a *robust quadrilateral*
- A graph constructed from overlapping robust quads will itself possess the robustness characteristics

## Trilateration w/ Robust Quads

If three nodes of a quad have known position, fourth can be computed with trilateration



Quads can be "chained" in this manner

## Our algorithm





#### Our algorithm (cont.)

**Cluster localization complete** 



#### 2-D Beacons from 1-D Ranging

- Demo: "Cricket" RF / acoustic beacons
  - Pairwise ranging from TDoA of pulse pair, ranging  $\sigma_{r}$  ~3cm
  - End-to-end beacon localization with position error  $\sigma_{xy} \sim 5$ cm



#### Localizing the "left-over" nodes



#### **Robot broadcasts locations**



#### **Robot broadcasts locations**



#### **Robot broadcasts locations**

