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  C-space: Minkowski sum 
  Motion Planning with Visibility Graphs, 

cell decomposition, and PRMs 

Last time we saw 



Sampling Around Obstacles 
[Amato et al 98] 
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To Navigate Narrow Passages we must sample in them 
•  most PRM nodes are where planning is easy (not needed) 

PRM Roadmap 
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Idea: Can we sample nodes near C-obstacle surfaces? 
•  we cannot explicitly construct the C-obstacles... 
•  we do have models of the (workspace) obstacles... 

OBPRM Roadmap 



OBPRM: Finding points on C-obstacles 
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Basic Idea (for workspace obstacle S) 
1. Find a point in S’s C-obstacle 
    (robot placement colliding with S) 
2.  Select a random direction in C-space 
3. Find a free point in that direction 
4. Find boundary point between them  
    using binary search (collision checks) 

Note: we can use more sophisticated 
approaches to try to cover C-obstacle 

C-obst 



Repairing Paths [Amato et al] 
Even with the best sampling methods, roadmaps 
may not contain valid solution paths 
•  may lack points in narrow passages  
•  may contain approximate paths that are nearly valid 
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Repairing Paths [Amato et al] 

1.  Create initial roadmap 
2.  Extract approximate path P  
3.  Repair P  (push to C-free) 

  Focus search around P 
  Use OBPRM-like techniques 

Even with the best sampling methods, roadmaps 
may not contain valid solution paths 
•  may lack points in narrow passages  
•  may contain approximate paths that are nearly valid 

Repairing/Improving Approximate Paths 
C-obstacle 
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Today 

  Numerical Grid methods for Motion 
Planning 

  Potential Fields for Motion Planning 



Planning as Search 
  Planning Involves Search Through a Search Space 

  How to conduct the search? 
  How to represent the search space? 
  How to evaluate the solutions? 

  Non-Deterministic Choice Points Determine 
Backtracking 
  Choice of actions 
  Choice of variable bindings 
  Choice of temporal orderings 
  Choice of subgoals to work on 



Setting up the State Space 

  Real space 
  Configuration space 
  State space 

  Actions get you from 
one state to another 

  Objective is to find a 
path from the start to the goal 



Topological Discretizations 

  State space could be 
states chosen from  
the c-space at random 

  Sampling states at  
random is the  
“probabilistic roadmap” 

  Visibility graph is optimal  
(in 2 dimensions only, however) 

  PRM is only optimal in the limit of infinite number of samples 
  Trade-off: optimality vs. difficulty of computing configuration 

space exactly 



Planning by Searching a Tree 



Planning by Searching a Tree 



Planning by Searching a Tree 



.... 

Planning by Searching a Tree 



Move Generation 
  Which state-action pair to consider next? 
  Shallowest next 

  aka: Breadth-first search 
  Guaranteed shortest 
  Storage intensive 

  Deepest next 
  aka: Depth-first search 
  Can be storage cheap 
  No shortness guarantees 

  Cheapest next 
  aka: Uniform-cost search 
  Breadth-first search is the same if the cost == depth 



Informed Search – A* 
  Use domain knowledge to bias the search 
  Favor actions that might get closer to the goal 
  Each state gets a value  

f(x)=g(x)+h(x) 



Informed Search – A* 
  Use domain knowledge to bias the search 
  Favor actions that might get closer to the goal 
  Each state gets a value  

f(x)=g(x)+h(x) 

Cost incurred so far, 
from the start state 

Estimated cost from 
here to the goal: 
“heuristic” cost 

 For example 
 g(x) = 3, h(x) = ||x-g|| =sqrt(82+182)=19.7, f(x)=22.7 



Informed Search – A* 
  Use domain knowledge 

to bias the search 
  Favor actions that might 

get closer to the goal 
  Each state gets a value  

f(x)=g(x)+h(x) 
  Choose the state with 

best f 

  For example 
  g(x) = 4, h(x) = ||x-g||=sqrt(112+182)=21.1, f(x)=25.1 



How to choose heuristics 

  The closer h(x) is to the true cost to the 
goal, h*(x), the more efficient your 
search BUT 

 h(x) ≤ h*(x) to guarantee that A* finds the 
lowest-cost path 

  In this case, h is an “admissible” heuristic 



Let’s Recap 

  Your mapping software gives you a 
great map.... and you want to get 

from here to here 



Decisions 
  How is your map described? This may have an 

impact on the state space for your planner 
  Is it a grid map? 
  Is it a list of polygons? 

  What kind of controller do you have? 
  Do you just have controllers on distance and orientation? 
  Do you have behaviours that will let you do things like 

follow walls? 

  What do you care about? 
  The shortest path? 
  The fastest path? 

  What kind of search to use? 
  Do you have a good heuristic? 
  If so, then maybe A* is a good idea. 



What’s a good algorithm for turning a 
polygonal c-space into a grid? 

  A grid square is in the c-space if it is: 
  not inside an obstacle 
  further than the radius of the robot from all obstacle edges 

  Algorithm: 
  Pick a grid square you know  

is in free space 
  Do breadth-first search (or  

“flood-fill”) from that start square 
  As each square is visited by the 

search, compute the distance to 
all obstacle edges 

  label as “free” if the distance is  
greater than the radius of the robot or 
“occupied” if the distance is less 

  Once breadth-first search is done,  
also label all unlabelled squares as 
“occupied” 



Once we have our state space (and 
action space, and cost function...) 

  Perform A* search 
  Construct the root of the tree as the start state, and give it 

value 0 
  While there are unexpanded leaves in the tree 

  Find the leaf x with the lowest value 
  For each action, create a new child leaf of x  
  Set the value of each child as: 

   g(x) = g(parent(x))+c(parent(x),x) 
   f(x)  = g(x)+h(x) 
where c(x, y) is the cost of moving from 
x to y (distance, in this case) and  
h(x) is the heuristic estimate of the  
remaining cost to the goal from x 
(euclidean distance, in this case) 



Once the search is done, and we 
have found the goal 

  We have a tree that contains a path from the 
start (root) to the goal (some leaf) 

  Follow the parent pointers in the tree and 
trace back from the goal to the root, keeping 
track of which states you pass through 

  This set of states constitutes your plan 

  How do we execute the plan? 



Once the search is done, and we 
have found the goal 

  We have a tree that contains a path from the start 
(root) to the goal (some leaf) 

  Follow the parent pointers in the tree and trace back 
from the goal to the root, keeping track of which 
states you pass through 

  This set of states constitutes your plan 

  To execute the plan, use your PD 
controller to face the first state in 
the plan, and then drive to it 

  Once at the state, face and drive 
to the next state 



A problem with plans 

  We have a plan that 
gets us from the 
start    to the goal 

  What happens if we 
take an action that 
causes us to leave the plan? 



A problem with plans 

  We have a plan that 
gets us from the 
start    to the goal 

  What happens if we 
take an action that 
causes us to leave the plan? 

1)  It’s a problem with planners!  
We should use behaviors! 

2)  We can replan 
3)  We can keep a cached conditional plan 
4)  We can keep a policy 



Potential Fields 

[Latombe 91] 

Attractive 
potential field 
for goal  

Attractive + 
repulsive 
potential fields 

Repulsive 
potential field 
for obstacles  

Equi-potential 
contours 

Force field 



A Reactive Motion Planner  

  The potential of each obstacle 
generates a repulsive force 

and the potential of the goal 
generates an attractive force 

  Easy and fast to compute 
  Susceptible to local minima 

Potential Field 



Potential Field Controllers 
  Basic idea  

  Construct potential field for goal 
  Construct potential field for each obstacle 
  Add potential fields to create the total potential V

(x, y) 
 Assume two-dimensional space (robot is a point) 

  Force on a particle is given by f = -grad (V) 
  Command robot velocity according to the following 

control law (policy) 
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Numerical Potential Functions 

Potential Field 

  We can compute the “true” potential 
at each point x by integrating  
the forces along the desired path  
from the goal to x 

  If we discretize the path, we get 

  Let’s think about this recursively; intuitively 
    potential at x is minimum over all places x’   
    potential at x’ + cost of moving from x to x’ 



Setting up the State Space 

  Again, we discretize 
our configuration 
space 



  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y))  (min over y) 
  Repeat 

Numerical Potential Field 
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  The numbers shown are for an obstacle-
induced cost of 0, and a goal-induced cost of 
1 unit per grid cell 



Uniform Cost Regression 
  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 

  Bellman-Ford’s algorithm 

  After planning, for each  
state, just look at the  
neighbors and move to  
the cheapest one,  
i.e., just roll down hill 



The Output Value Function 



Planner Optimality 
  There are two issues here 

  Can the planner express the best (shortest, fastest) plan 
possible? 

  Will the planner find the best plan it can express? 

  Your state and action spaces affect the former 
  Your search strategy (search vs. Dijkstra’s algorithm, 

which state in the search tree to expand next, etc.) 
affects the latter 

The optimal plan 

But this might be the shortest 
plan your planner’s state 

space can represent 

But this might be the plan 
your planner finds if you use 
a suboptimal search strategy 



Planner Complexity 
  Optimal search algorithms are O(d|a|) where d is the 

depth of the solution in the search tree, and |a| is 
the number of actions 

  Dijkstra’s algorithm (and therefore the numerical 
potential field) is O(n2) if implemented naively, O
(nlogn) if states are updated using priority queues, 
where n is the number of states 

  There’s a trade-off between the computational 
complexity you can afford, and how good a plan you 
need 



We can use shortest path algorithm on 
other State Spaces 

  We can reduce the 
state space size by 
sampling from the  
configuration space, 
rather than using a 
regular grid 

  Potential advantages:  
  More efficient search 

  Potential disadvantages:  
  How to connect sampled states? 
  Good sampling strategies 
  Limited set of possible plans 



1 

Running Shortest Path Algorithm on the 
Probabilistic Roadmap 

  Sample states randomly 
  Add the start and goal 

state 
  Add action edges between 

states x and y if you 
can get from x to y with  
your controller, and set 
cost c(x, y) 

  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 
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Running Shortest Path Algorithm on 
the Visibility Graph 

  Put states at the start, goal, 
and polygon corners 

  Add action edges between 
states x and y if you 
can get from x to y with  
your controller, and set 
cost c(x, y) 

  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 



What you should know 
  Planning as search 
  The design decisions in setting up a planner 
  C-obstacle algorithm and grid approximation 
  Different forms of search: breadth-first, 

depth-first, A* 
  Mapping motion planning to graph search 

using v-graphs, cell decomposition, PRMs, 
grids, numerical potentials 

  How to decide which is best to use each 



Design Choices 
  What state space to use 
  What set of actions to use 
  What search method to use 
  What cost function to use (distance, time, etc.) 
  If using informed search, what heuristic to use 

  The critical choice for motion planning is state space 
  The other choices tend to affect computational 

performance, not robot performance 



Data Structures 
  While there are unexpanded leaves in the tree 

  Find the leaf x with the lowest value 
  For each action, create a new child leaf of x  
  Set the value of each child 

  Let’s say that each tree node is given by 
!! !public class State {!
!! ! !int id; !!
!! ! !double coordinates[2];!
!! ! !int neighbours[];!
!! ! !double priority;!
!! ! !State parent;!
!! ! !State [] children;!
!! !} 

  Then as you create new children, you store them in the children array inside 
the parent State 

  The tree structure, however, does not automatically tell you the lowest (or 
highest) priority child 

  Therefore, as you add each child to the parent state in the tree, also add the 
child to a sorted set (e.g., java.util.TreeSet) that has the methods add() and 
first() that will let you add items and retrieve the lowest (highest) items in O
(log n) time. (NB: If using TreeSet, you would need to make sure your State 
class implements the comparable interface.) 



Progression vs. Regression 
  Progression (forward-chaining): 

  Choose action whose preconditions are satisfied 
  Continue until goal state is reached 

  Regression (backward-chaining): 
  Choose action that has an effect that matches an unachieved 

subgoal 
  Add unachieved preconditions to set of subgoals 
  Continue until set of unachieved subgoals is empty 

  Progression: + Simple algorithm (“forward simulation”) 
  Often large branching factor 

  Regression: + Focused on achieving goals 
  Need to reason about actions 
  Regression is incomplete, in general, for functional effects 



 Potential Field Controllers 
  Basic idea 

  Create attractive potential field to pull robot (R) toward 
a goal 

  Create repulsive potential field to repel robot (R) from 
obstacles 

  In two-dimensional space (robot is a point, goal/
obstacles are points) 

  Remember:  Force on a particle is given by f = -grad(V) 

( ) [ ]     
2 , goal R d k V goal = 

( )obsRd
cVobs ,

=

( ) ( ) ( )[ ]2122, goalgoal yyxxgoalRd −+−=
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Optimal vs. Satisficing 
  In motion planning, we typically prefer 

“shortest” paths, in distance, time, power 
consumption or some other objective 

  Our choice of objective function implies a cost 
(or reward) function on actions 

  Sometimes, we just want to find any 
sequence of actions that connects the start 
and the goal 



Numerical Potential Functions 

Potential Field 

  We can compute the “true” potential 
at each point x by integrating  
the forces along the desired path  
from the goal to x 

  If we discretize the path, we get 

  Let’s write this recursively: 

C(x) = F(x) = ∇Uatt(x)-∇Urep(x) 


