
6.141:
Robotics systems and science
Lecture 10: Implementing
 Motion Planning

Lecture Notes Prepared by N. Roy and D. Rus
EECS/MIT

Spring 2011

Reading: Chapter 3, and Craig: Robotics
 http://courses.csail.mit.edu/6.141/!
Challenge: Build a Shelter on Mars!

  C-space: Minkowski sum
  Motion Planning with Visibility Graphs,

cell decomposition, and PRMs

Last time we saw

Sampling Around Obstacles
[Amato et al 98]

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
•  most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle surfaces?
•  we cannot explicitly construct the C-obstacles...
•  we do have models of the (workspace) obstacles...

OBPRM Roadmap

OBPRM: Finding points on C-obstacles

1

3

2

4
5

Basic Idea (for workspace obstacle S)
1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
approaches to try to cover C-obstacle

C-obst

Repairing Paths [Amato et al]
Even with the best sampling methods, roadmaps
may not contain valid solution paths
•  may lack points in narrow passages
•  may contain approximate paths that are nearly valid

C-obstacle

C-obstacle
approximate

path

Repairing Paths [Amato et al]

1.  Create initial roadmap
2.  Extract approximate path P
3.  Repair P (push to C-free)

  Focus search around P
  Use OBPRM-like techniques

Even with the best sampling methods, roadmaps
may not contain valid solution paths
•  may lack points in narrow passages
•  may contain approximate paths that are nearly valid

Repairing/Improving Approximate Paths
C-obstacle

C-obstacle
approximate

path

repaired
path

Today

  Numerical Grid methods for Motion
Planning

  Potential Fields for Motion Planning

Planning as Search
  Planning Involves Search Through a Search Space

  How to conduct the search?
  How to represent the search space?
  How to evaluate the solutions?

  Non-Deterministic Choice Points Determine
Backtracking
  Choice of actions
  Choice of variable bindings
  Choice of temporal orderings
  Choice of subgoals to work on

Setting up the State Space

  Real space
  Configuration space
  State space

  Actions get you from
one state to another

  Objective is to find a
path from the start to the goal

Topological Discretizations

  State space could be
states chosen from
the c-space at random

  Sampling states at
random is the
“probabilistic roadmap”

  Visibility graph is optimal
(in 2 dimensions only, however)

  PRM is only optimal in the limit of infinite number of samples
  Trade-off: optimality vs. difficulty of computing configuration

space exactly

Planning by Searching a Tree

Planning by Searching a Tree

Planning by Searching a Tree

....

Planning by Searching a Tree

Move Generation
  Which state-action pair to consider next?
  Shallowest next

  aka: Breadth-first search
  Guaranteed shortest
  Storage intensive

  Deepest next
  aka: Depth-first search
  Can be storage cheap
  No shortness guarantees

  Cheapest next
  aka: Uniform-cost search
  Breadth-first search is the same if the cost == depth

Informed Search – A*
  Use domain knowledge to bias the search
  Favor actions that might get closer to the goal
  Each state gets a value

f(x)=g(x)+h(x)

Informed Search – A*
  Use domain knowledge to bias the search
  Favor actions that might get closer to the goal
  Each state gets a value

f(x)=g(x)+h(x)

Cost incurred so far,
from the start state

Estimated cost from
here to the goal:
“heuristic” cost

 For example
 g(x) = 3, h(x) = ||x-g|| =sqrt(82+182)=19.7, f(x)=22.7

Informed Search – A*
  Use domain knowledge

to bias the search
  Favor actions that might

get closer to the goal
  Each state gets a value

f(x)=g(x)+h(x)
  Choose the state with

best f

  For example
  g(x) = 4, h(x) = ||x-g||=sqrt(112+182)=21.1, f(x)=25.1

How to choose heuristics

  The closer h(x) is to the true cost to the
goal, h*(x), the more efficient your
search BUT

 h(x) ≤ h*(x) to guarantee that A* finds the
lowest-cost path

  In this case, h is an “admissible” heuristic

Let’s Recap

  Your mapping software gives you a
great map.... and you want to get

from here to here

Decisions
  How is your map described? This may have an

impact on the state space for your planner
  Is it a grid map?
  Is it a list of polygons?

  What kind of controller do you have?
  Do you just have controllers on distance and orientation?
  Do you have behaviours that will let you do things like

follow walls?

  What do you care about?
  The shortest path?
  The fastest path?

  What kind of search to use?
  Do you have a good heuristic?
  If so, then maybe A* is a good idea.

What’s a good algorithm for turning a
polygonal c-space into a grid?

  A grid square is in the c-space if it is:
  not inside an obstacle
  further than the radius of the robot from all obstacle edges

  Algorithm:
  Pick a grid square you know

is in free space
  Do breadth-first search (or

“flood-fill”) from that start square
  As each square is visited by the

search, compute the distance to
all obstacle edges

  label as “free” if the distance is
greater than the radius of the robot or
“occupied” if the distance is less

  Once breadth-first search is done,
also label all unlabelled squares as
“occupied”

Once we have our state space (and
action space, and cost function...)

  Perform A* search
  Construct the root of the tree as the start state, and give it

value 0
  While there are unexpanded leaves in the tree

  Find the leaf x with the lowest value
  For each action, create a new child leaf of x
  Set the value of each child as:

 g(x) = g(parent(x))+c(parent(x),x)
 f(x) = g(x)+h(x)
where c(x, y) is the cost of moving from
x to y (distance, in this case) and
h(x) is the heuristic estimate of the
remaining cost to the goal from x
(euclidean distance, in this case)

Once the search is done, and we
have found the goal

  We have a tree that contains a path from the
start (root) to the goal (some leaf)

  Follow the parent pointers in the tree and
trace back from the goal to the root, keeping
track of which states you pass through

  This set of states constitutes your plan

  How do we execute the plan?

Once the search is done, and we
have found the goal

  We have a tree that contains a path from the start
(root) to the goal (some leaf)

  Follow the parent pointers in the tree and trace back
from the goal to the root, keeping track of which
states you pass through

  This set of states constitutes your plan

  To execute the plan, use your PD
controller to face the first state in
the plan, and then drive to it

  Once at the state, face and drive
to the next state

A problem with plans

  We have a plan that
gets us from the
start to the goal

  What happens if we
take an action that
causes us to leave the plan?

A problem with plans

  We have a plan that
gets us from the
start to the goal

  What happens if we
take an action that
causes us to leave the plan?

1)  It’s a problem with planners!
We should use behaviors!

2)  We can replan
3)  We can keep a cached conditional plan
4)  We can keep a policy

Potential Fields

[Latombe 91]

Attractive
potential field
for goal

Attractive +
repulsive
potential fields

Repulsive
potential field
for obstacles

Equi-potential
contours

Force field

A Reactive Motion Planner

  The potential of each obstacle
generates a repulsive force

and the potential of the goal
generates an attractive force

  Easy and fast to compute
  Susceptible to local minima

Potential Field

Potential Field Controllers
  Basic idea

  Construct potential field for goal
  Construct potential field for each obstacle
  Add potential fields to create the total potential V

(x, y)
 Assume two-dimensional space (robot is a point)

  Force on a particle is given by f = -grad (V)
  Command robot velocity according to the following

control law (policy)

y
Vk

dt
dy

x
Vk

dt
dx

∂
∂

−=

∂
∂

−=

Numerical Potential Functions

Potential Field

  We can compute the “true” potential
at each point x by integrating
the forces along the desired path
from the goal to x

  If we discretize the path, we get

  Let’s think about this recursively; intuitively
 potential at x is minimum over all places x’
 potential at x’ + cost of moving from x to x’

Setting up the State Space

  Again, we discretize
our configuration
space

  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y)) (min over y)
  Repeat

Numerical Potential Field

0
1 1 1
1
1 1 1

1
2
2

2 2

2 2 2 2

3
3
3

4
4
4

5
5
5

6
6
6

7
7
7

8
8
8

9
9
9

10
10
10

11
11
11

12
12
12

13
13
13

14
14
14

15
15
15

16
16
16

3 3
4 4
5 5

6 6 6
7 7 7

  The numbers shown are for an obstacle-
induced cost of 0, and a goal-induced cost of
1 unit per grid cell

Uniform Cost Regression
  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat

  Bellman-Ford’s algorithm

  After planning, for each
state, just look at the
neighbors and move to
the cheapest one,
i.e., just roll down hill

The Output Value Function

Planner Optimality
  There are two issues here

  Can the planner express the best (shortest, fastest) plan
possible?

  Will the planner find the best plan it can express?

  Your state and action spaces affect the former
  Your search strategy (search vs. Dijkstra’s algorithm,

which state in the search tree to expand next, etc.)
affects the latter

The optimal plan

But this might be the shortest
plan your planner’s state

space can represent

But this might be the plan
your planner finds if you use
a suboptimal search strategy

Planner Complexity
  Optimal search algorithms are O(d|a|) where d is the

depth of the solution in the search tree, and |a| is
the number of actions

  Dijkstra’s algorithm (and therefore the numerical
potential field) is O(n2) if implemented naively, O
(nlogn) if states are updated using priority queues,
where n is the number of states

  There’s a trade-off between the computational
complexity you can afford, and how good a plan you
need

We can use shortest path algorithm on
other State Spaces

  We can reduce the
state space size by
sampling from the
configuration space,
rather than using a
regular grid

  Potential advantages:
  More efficient search

  Potential disadvantages:
  How to connect sampled states?
  Good sampling strategies
  Limited set of possible plans

1

Running Shortest Path Algorithm on the
Probabilistic Roadmap

  Sample states randomly
  Add the start and goal

state
  Add action edges between

states x and y if you
can get from x to y with
your controller, and set
cost c(x, y)

  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat

0
1

1 4

6

6

6 8

8

10 10

2 1

1

5

4 4

2
2

2 1 2

2

2

2

2

1

Running Shortest Path Algorithm on
the Visibility Graph

  Put states at the start, goal,
and polygon corners

  Add action edges between
states x and y if you
can get from x to y with
your controller, and set
cost c(x, y)

  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat

What you should know
  Planning as search
  The design decisions in setting up a planner
  C-obstacle algorithm and grid approximation
  Different forms of search: breadth-first,

depth-first, A*
  Mapping motion planning to graph search

using v-graphs, cell decomposition, PRMs,
grids, numerical potentials

  How to decide which is best to use each

Design Choices
  What state space to use
  What set of actions to use
  What search method to use
  What cost function to use (distance, time, etc.)
  If using informed search, what heuristic to use

  The critical choice for motion planning is state space
  The other choices tend to affect computational

performance, not robot performance

Data Structures
  While there are unexpanded leaves in the tree

  Find the leaf x with the lowest value
  For each action, create a new child leaf of x
  Set the value of each child

  Let’s say that each tree node is given by
!! !public class State {!
!! ! !int id; !!
!! ! !double coordinates[2];!
!! ! !int neighbours[];!
!! ! !double priority;!
!! ! !State parent;!
!! ! !State [] children;!
!! !}

  Then as you create new children, you store them in the children array inside
the parent State

  The tree structure, however, does not automatically tell you the lowest (or
highest) priority child

  Therefore, as you add each child to the parent state in the tree, also add the
child to a sorted set (e.g., java.util.TreeSet) that has the methods add() and
first() that will let you add items and retrieve the lowest (highest) items in O
(log n) time. (NB: If using TreeSet, you would need to make sure your State
class implements the comparable interface.)

Progression vs. Regression
  Progression (forward-chaining):

  Choose action whose preconditions are satisfied
  Continue until goal state is reached

  Regression (backward-chaining):
  Choose action that has an effect that matches an unachieved

subgoal
  Add unachieved preconditions to set of subgoals
  Continue until set of unachieved subgoals is empty

  Progression: + Simple algorithm (“forward simulation”)
  Often large branching factor

  Regression: + Focused on achieving goals
  Need to reason about actions
  Regression is incomplete, in general, for functional effects

 Potential Field Controllers
  Basic idea

  Create attractive potential field to pull robot (R) toward
a goal

  Create repulsive potential field to repel robot (R) from
obstacles

  In two-dimensional space (robot is a point, goal/
obstacles are points)

  Remember: Force on a particle is given by f = -grad(V)

() []
2 , goal R d k V goal =

()obsRd
cVobs ,

=

() () ()[]2122, goalgoal yyxxgoalRd −+−=

() () ()[]2122, obsobs yyxxobsRd −+−=

Optimal vs. Satisficing
  In motion planning, we typically prefer

“shortest” paths, in distance, time, power
consumption or some other objective

  Our choice of objective function implies a cost
(or reward) function on actions

  Sometimes, we just want to find any
sequence of actions that connects the start
and the goal

Numerical Potential Functions

Potential Field

  We can compute the “true” potential
at each point x by integrating
the forces along the desired path
from the goal to x

  If we discretize the path, we get

  Let’s write this recursively:

C(x) = F(x) = ∇Uatt(x)-∇Urep(x)

