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  C-space: Minkowski sum 
  Motion Planning with Visibility Graphs, 

cell decomposition, and PRMs 

Last time we saw 



Sampling Around Obstacles 
[Amato et al 98] 
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To Navigate Narrow Passages we must sample in them 
•  most PRM nodes are where planning is easy (not needed) 

PRM Roadmap 
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Idea: Can we sample nodes near C-obstacle surfaces? 
•  we cannot explicitly construct the C-obstacles... 
•  we do have models of the (workspace) obstacles... 

OBPRM Roadmap 



OBPRM: Finding points on C-obstacles 
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Basic Idea (for workspace obstacle S) 
1. Find a point in S’s C-obstacle 
    (robot placement colliding with S) 
2.  Select a random direction in C-space 
3. Find a free point in that direction 
4. Find boundary point between them  
    using binary search (collision checks) 

Note: we can use more sophisticated 
approaches to try to cover C-obstacle 

C-obst 



Repairing Paths [Amato et al] 
Even with the best sampling methods, roadmaps 
may not contain valid solution paths 
•  may lack points in narrow passages  
•  may contain approximate paths that are nearly valid 
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Repairing Paths [Amato et al] 

1.  Create initial roadmap 
2.  Extract approximate path P  
3.  Repair P  (push to C-free) 

  Focus search around P 
  Use OBPRM-like techniques 

Even with the best sampling methods, roadmaps 
may not contain valid solution paths 
•  may lack points in narrow passages  
•  may contain approximate paths that are nearly valid 

Repairing/Improving Approximate Paths 
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Today 

  Numerical Grid methods for Motion 
Planning 

  Potential Fields for Motion Planning 



Planning as Search 
  Planning Involves Search Through a Search Space 

  How to conduct the search? 
  How to represent the search space? 
  How to evaluate the solutions? 

  Non-Deterministic Choice Points Determine 
Backtracking 
  Choice of actions 
  Choice of variable bindings 
  Choice of temporal orderings 
  Choice of subgoals to work on 



Setting up the State Space 

  Real space 
  Configuration space 
  State space 

  Actions get you from 
one state to another 

  Objective is to find a 
path from the start to the goal 



Topological Discretizations 

  State space could be 
states chosen from  
the c-space at random 

  Sampling states at  
random is the  
“probabilistic roadmap” 

  Visibility graph is optimal  
(in 2 dimensions only, however) 

  PRM is only optimal in the limit of infinite number of samples 
  Trade-off: optimality vs. difficulty of computing configuration 

space exactly 



Planning by Searching a Tree 



Planning by Searching a Tree 



Planning by Searching a Tree 



.... 

Planning by Searching a Tree 



Move Generation 
  Which state-action pair to consider next? 
  Shallowest next 

  aka: Breadth-first search 
  Guaranteed shortest 
  Storage intensive 

  Deepest next 
  aka: Depth-first search 
  Can be storage cheap 
  No shortness guarantees 

  Cheapest next 
  aka: Uniform-cost search 
  Breadth-first search is the same if the cost == depth 



Informed Search – A* 
  Use domain knowledge to bias the search 
  Favor actions that might get closer to the goal 
  Each state gets a value  

f(x)=g(x)+h(x) 



Informed Search – A* 
  Use domain knowledge to bias the search 
  Favor actions that might get closer to the goal 
  Each state gets a value  

f(x)=g(x)+h(x) 

Cost incurred so far, 
from the start state 

Estimated cost from 
here to the goal: 
“heuristic” cost 

 For example 
 g(x) = 3, h(x) = ||x-g|| =sqrt(82+182)=19.7, f(x)=22.7 



Informed Search – A* 
  Use domain knowledge 

to bias the search 
  Favor actions that might 

get closer to the goal 
  Each state gets a value  

f(x)=g(x)+h(x) 
  Choose the state with 

best f 

  For example 
  g(x) = 4, h(x) = ||x-g||=sqrt(112+182)=21.1, f(x)=25.1 



How to choose heuristics 

  The closer h(x) is to the true cost to the 
goal, h*(x), the more efficient your 
search BUT 

 h(x) ≤ h*(x) to guarantee that A* finds the 
lowest-cost path 

  In this case, h is an “admissible” heuristic 



Let’s Recap 

  Your mapping software gives you a 
great map.... and you want to get 

from here to here 



Decisions 
  How is your map described? This may have an 

impact on the state space for your planner 
  Is it a grid map? 
  Is it a list of polygons? 

  What kind of controller do you have? 
  Do you just have controllers on distance and orientation? 
  Do you have behaviours that will let you do things like 

follow walls? 

  What do you care about? 
  The shortest path? 
  The fastest path? 

  What kind of search to use? 
  Do you have a good heuristic? 
  If so, then maybe A* is a good idea. 



What’s a good algorithm for turning a 
polygonal c-space into a grid? 

  A grid square is in the c-space if it is: 
  not inside an obstacle 
  further than the radius of the robot from all obstacle edges 

  Algorithm: 
  Pick a grid square you know  

is in free space 
  Do breadth-first search (or  

“flood-fill”) from that start square 
  As each square is visited by the 

search, compute the distance to 
all obstacle edges 

  label as “free” if the distance is  
greater than the radius of the robot or 
“occupied” if the distance is less 

  Once breadth-first search is done,  
also label all unlabelled squares as 
“occupied” 



Once we have our state space (and 
action space, and cost function...) 

  Perform A* search 
  Construct the root of the tree as the start state, and give it 

value 0 
  While there are unexpanded leaves in the tree 

  Find the leaf x with the lowest value 
  For each action, create a new child leaf of x  
  Set the value of each child as: 

   g(x) = g(parent(x))+c(parent(x),x) 
   f(x)  = g(x)+h(x) 
where c(x, y) is the cost of moving from 
x to y (distance, in this case) and  
h(x) is the heuristic estimate of the  
remaining cost to the goal from x 
(euclidean distance, in this case) 



Once the search is done, and we 
have found the goal 

  We have a tree that contains a path from the 
start (root) to the goal (some leaf) 

  Follow the parent pointers in the tree and 
trace back from the goal to the root, keeping 
track of which states you pass through 

  This set of states constitutes your plan 

  How do we execute the plan? 



Once the search is done, and we 
have found the goal 

  We have a tree that contains a path from the start 
(root) to the goal (some leaf) 

  Follow the parent pointers in the tree and trace back 
from the goal to the root, keeping track of which 
states you pass through 

  This set of states constitutes your plan 

  To execute the plan, use your PD 
controller to face the first state in 
the plan, and then drive to it 

  Once at the state, face and drive 
to the next state 



A problem with plans 

  We have a plan that 
gets us from the 
start    to the goal 

  What happens if we 
take an action that 
causes us to leave the plan? 



A problem with plans 

  We have a plan that 
gets us from the 
start    to the goal 

  What happens if we 
take an action that 
causes us to leave the plan? 

1)  It’s a problem with planners!  
We should use behaviors! 

2)  We can replan 
3)  We can keep a cached conditional plan 
4)  We can keep a policy 



Potential Fields 

[Latombe 91] 

Attractive 
potential field 
for goal  

Attractive + 
repulsive 
potential fields 

Repulsive 
potential field 
for obstacles  

Equi-potential 
contours 

Force field 



A Reactive Motion Planner  

  The potential of each obstacle 
generates a repulsive force 

and the potential of the goal 
generates an attractive force 

  Easy and fast to compute 
  Susceptible to local minima 

Potential Field 



Potential Field Controllers 
  Basic idea  

  Construct potential field for goal 
  Construct potential field for each obstacle 
  Add potential fields to create the total potential V

(x, y) 
 Assume two-dimensional space (robot is a point) 

  Force on a particle is given by f = -grad (V) 
  Command robot velocity according to the following 

control law (policy) 
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Numerical Potential Functions 

Potential Field 

  We can compute the “true” potential 
at each point x by integrating  
the forces along the desired path  
from the goal to x 

  If we discretize the path, we get 

  Let’s think about this recursively; intuitively 
    potential at x is minimum over all places x’   
    potential at x’ + cost of moving from x to x’ 



Setting up the State Space 

  Again, we discretize 
our configuration 
space 



  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y))  (min over y) 
  Repeat 

Numerical Potential Field 
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  The numbers shown are for an obstacle-
induced cost of 0, and a goal-induced cost of 
1 unit per grid cell 



Uniform Cost Regression 
  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 

  Bellman-Ford’s algorithm 

  After planning, for each  
state, just look at the  
neighbors and move to  
the cheapest one,  
i.e., just roll down hill 



The Output Value Function 



Planner Optimality 
  There are two issues here 

  Can the planner express the best (shortest, fastest) plan 
possible? 

  Will the planner find the best plan it can express? 

  Your state and action spaces affect the former 
  Your search strategy (search vs. Dijkstra’s algorithm, 

which state in the search tree to expand next, etc.) 
affects the latter 

The optimal plan 

But this might be the shortest 
plan your planner’s state 

space can represent 

But this might be the plan 
your planner finds if you use 
a suboptimal search strategy 



Planner Complexity 
  Optimal search algorithms are O(d|a|) where d is the 

depth of the solution in the search tree, and |a| is 
the number of actions 

  Dijkstra’s algorithm (and therefore the numerical 
potential field) is O(n2) if implemented naively, O
(nlogn) if states are updated using priority queues, 
where n is the number of states 

  There’s a trade-off between the computational 
complexity you can afford, and how good a plan you 
need 



We can use shortest path algorithm on 
other State Spaces 

  We can reduce the 
state space size by 
sampling from the  
configuration space, 
rather than using a 
regular grid 

  Potential advantages:  
  More efficient search 

  Potential disadvantages:  
  How to connect sampled states? 
  Good sampling strategies 
  Limited set of possible plans 



1 

Running Shortest Path Algorithm on the 
Probabilistic Roadmap 

  Sample states randomly 
  Add the start and goal 

state 
  Add action edges between 

states x and y if you 
can get from x to y with  
your controller, and set 
cost c(x, y) 

  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 
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Running Shortest Path Algorithm on 
the Visibility Graph 

  Put states at the start, goal, 
and polygon corners 

  Add action edges between 
states x and y if you 
can get from x to y with  
your controller, and set 
cost c(x, y) 

  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 



What you should know 
  Planning as search 
  The design decisions in setting up a planner 
  C-obstacle algorithm and grid approximation 
  Different forms of search: breadth-first, 

depth-first, A* 
  Mapping motion planning to graph search 

using v-graphs, cell decomposition, PRMs, 
grids, numerical potentials 

  How to decide which is best to use each 



Design Choices 
  What state space to use 
  What set of actions to use 
  What search method to use 
  What cost function to use (distance, time, etc.) 
  If using informed search, what heuristic to use 

  The critical choice for motion planning is state space 
  The other choices tend to affect computational 

performance, not robot performance 



Data Structures 
  While there are unexpanded leaves in the tree 

  Find the leaf x with the lowest value 
  For each action, create a new child leaf of x  
  Set the value of each child 

  Let’s say that each tree node is given by 
!! !public class State {!
!! ! !int id; !!
!! ! !double coordinates[2];!
!! ! !int neighbours[];!
!! ! !double priority;!
!! ! !State parent;!
!! ! !State [] children;!
!! !} 

  Then as you create new children, you store them in the children array inside 
the parent State 

  The tree structure, however, does not automatically tell you the lowest (or 
highest) priority child 

  Therefore, as you add each child to the parent state in the tree, also add the 
child to a sorted set (e.g., java.util.TreeSet) that has the methods add() and 
first() that will let you add items and retrieve the lowest (highest) items in O
(log n) time. (NB: If using TreeSet, you would need to make sure your State 
class implements the comparable interface.) 



Progression vs. Regression 
  Progression (forward-chaining): 

  Choose action whose preconditions are satisfied 
  Continue until goal state is reached 

  Regression (backward-chaining): 
  Choose action that has an effect that matches an unachieved 

subgoal 
  Add unachieved preconditions to set of subgoals 
  Continue until set of unachieved subgoals is empty 

  Progression: + Simple algorithm (“forward simulation”) 
  Often large branching factor 

  Regression: + Focused on achieving goals 
  Need to reason about actions 
  Regression is incomplete, in general, for functional effects 



 Potential Field Controllers 
  Basic idea 

  Create attractive potential field to pull robot (R) toward 
a goal 

  Create repulsive potential field to repel robot (R) from 
obstacles 

  In two-dimensional space (robot is a point, goal/
obstacles are points) 

  Remember:  Force on a particle is given by f = -grad(V) 
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Optimal vs. Satisficing 
  In motion planning, we typically prefer 

“shortest” paths, in distance, time, power 
consumption or some other objective 

  Our choice of objective function implies a cost 
(or reward) function on actions 

  Sometimes, we just want to find any 
sequence of actions that connects the start 
and the goal 



Numerical Potential Functions 

Potential Field 

  We can compute the “true” potential 
at each point x by integrating  
the forces along the desired path  
from the goal to x 

  If we discretize the path, we get 

  Let’s write this recursively: 

C(x) = F(x) = ∇Uatt(x)-∇Urep(x) 


