
6.141:
Robotics systems and science
Lecture 10: Implementing
 Motion Planning

Lecture Notes Prepared by N. Roy and D. Rus
EECS/MIT

Spring 2011

Reading: Chapter 3, and Craig: Robotics
 http://courses.csail.mit.edu/6.141/!
Challenge: Build a Shelter on Mars!

  C-space: Minkowski sum
  Motion Planning with Visibility Graphs,

cell decomposition, and PRMs

Last time we saw

Sampling Around Obstacles
[Amato et al 98]

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
•  most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle surfaces?
•  we cannot explicitly construct the C-obstacles...
•  we do have models of the (workspace) obstacles...

OBPRM Roadmap

OBPRM: Finding points on C-obstacles

1

3

2

4
5

Basic Idea (for workspace obstacle S)
1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
approaches to try to cover C-obstacle

C-obst

Repairing Paths [Amato et al]
Even with the best sampling methods, roadmaps
may not contain valid solution paths
•  may lack points in narrow passages
•  may contain approximate paths that are nearly valid

C-obstacle

C-obstacle
approximate

path

Repairing Paths [Amato et al]

1.  Create initial roadmap
2.  Extract approximate path P
3.  Repair P (push to C-free)

  Focus search around P
  Use OBPRM-like techniques

Even with the best sampling methods, roadmaps
may not contain valid solution paths
•  may lack points in narrow passages
•  may contain approximate paths that are nearly valid

Repairing/Improving Approximate Paths
C-obstacle

C-obstacle
approximate

path

repaired
path

Today

  Numerical Grid methods for Motion
Planning

  Potential Fields for Motion Planning

Planning as Search
  Planning Involves Search Through a Search Space

  How to conduct the search?
  How to represent the search space?
  How to evaluate the solutions?

  Non-Deterministic Choice Points Determine
Backtracking
  Choice of actions
  Choice of variable bindings
  Choice of temporal orderings
  Choice of subgoals to work on

Setting up the State Space

  Real space
  Configuration space
  State space

  Actions get you from
one state to another

  Objective is to find a
path from the start to the goal

Topological Discretizations

  State space could be
states chosen from
the c-space at random

  Sampling states at
random is the
“probabilistic roadmap”

  Visibility graph is optimal
(in 2 dimensions only, however)

  PRM is only optimal in the limit of infinite number of samples
  Trade-off: optimality vs. difficulty of computing configuration

space exactly

Planning by Searching a Tree

Planning by Searching a Tree

Planning by Searching a Tree

....

Planning by Searching a Tree

Move Generation
  Which state-action pair to consider next?
  Shallowest next

  aka: Breadth-first search
  Guaranteed shortest
  Storage intensive

  Deepest next
  aka: Depth-first search
  Can be storage cheap
  No shortness guarantees

  Cheapest next
  aka: Uniform-cost search
  Breadth-first search is the same if the cost == depth

Informed Search – A*
  Use domain knowledge to bias the search
  Favor actions that might get closer to the goal
  Each state gets a value

f(x)=g(x)+h(x)

Informed Search – A*
  Use domain knowledge to bias the search
  Favor actions that might get closer to the goal
  Each state gets a value

f(x)=g(x)+h(x)

Cost incurred so far,
from the start state

Estimated cost from
here to the goal:
“heuristic” cost

 For example
 g(x) = 3, h(x) = ||x-g|| =sqrt(82+182)=19.7, f(x)=22.7

Informed Search – A*
  Use domain knowledge

to bias the search
  Favor actions that might

get closer to the goal
  Each state gets a value

f(x)=g(x)+h(x)
  Choose the state with

best f

  For example
  g(x) = 4, h(x) = ||x-g||=sqrt(112+182)=21.1, f(x)=25.1

How to choose heuristics

  The closer h(x) is to the true cost to the
goal, h*(x), the more efficient your
search BUT

 h(x) ≤ h*(x) to guarantee that A* finds the
lowest-cost path

  In this case, h is an “admissible” heuristic

Let’s Recap

  Your mapping software gives you a
great map.... and you want to get

from here to here

Decisions
  How is your map described? This may have an

impact on the state space for your planner
  Is it a grid map?
  Is it a list of polygons?

  What kind of controller do you have?
  Do you just have controllers on distance and orientation?
  Do you have behaviours that will let you do things like

follow walls?

  What do you care about?
  The shortest path?
  The fastest path?

  What kind of search to use?
  Do you have a good heuristic?
  If so, then maybe A* is a good idea.

What’s a good algorithm for turning a
polygonal c-space into a grid?

  A grid square is in the c-space if it is:
  not inside an obstacle
  further than the radius of the robot from all obstacle edges

  Algorithm:
  Pick a grid square you know

is in free space
  Do breadth-first search (or

“flood-fill”) from that start square
  As each square is visited by the

search, compute the distance to
all obstacle edges

  label as “free” if the distance is
greater than the radius of the robot or
“occupied” if the distance is less

  Once breadth-first search is done,
also label all unlabelled squares as
“occupied”

Once we have our state space (and
action space, and cost function...)

  Perform A* search
  Construct the root of the tree as the start state, and give it

value 0
  While there are unexpanded leaves in the tree

  Find the leaf x with the lowest value
  For each action, create a new child leaf of x
  Set the value of each child as:

 g(x) = g(parent(x))+c(parent(x),x)
 f(x) = g(x)+h(x)
where c(x, y) is the cost of moving from
x to y (distance, in this case) and
h(x) is the heuristic estimate of the
remaining cost to the goal from x
(euclidean distance, in this case)

Once the search is done, and we
have found the goal

  We have a tree that contains a path from the
start (root) to the goal (some leaf)

  Follow the parent pointers in the tree and
trace back from the goal to the root, keeping
track of which states you pass through

  This set of states constitutes your plan

  How do we execute the plan?

Once the search is done, and we
have found the goal

  We have a tree that contains a path from the start
(root) to the goal (some leaf)

  Follow the parent pointers in the tree and trace back
from the goal to the root, keeping track of which
states you pass through

  This set of states constitutes your plan

  To execute the plan, use your PD
controller to face the first state in
the plan, and then drive to it

  Once at the state, face and drive
to the next state

A problem with plans

  We have a plan that
gets us from the
start to the goal

  What happens if we
take an action that
causes us to leave the plan?

A problem with plans

  We have a plan that
gets us from the
start to the goal

  What happens if we
take an action that
causes us to leave the plan?

1)  It’s a problem with planners!
We should use behaviors!

2)  We can replan
3)  We can keep a cached conditional plan
4)  We can keep a policy

Potential Fields

[Latombe 91]

Attractive
potential field
for goal

Attractive +
repulsive
potential fields

Repulsive
potential field
for obstacles

Equi-potential
contours

Force field

A Reactive Motion Planner

  The potential of each obstacle
generates a repulsive force

and the potential of the goal
generates an attractive force

  Easy and fast to compute
  Susceptible to local minima

Potential Field

Potential Field Controllers
  Basic idea

  Construct potential field for goal
  Construct potential field for each obstacle
  Add potential fields to create the total potential V

(x, y)
 Assume two-dimensional space (robot is a point)

  Force on a particle is given by f = -grad (V)
  Command robot velocity according to the following

control law (policy)

y
Vk

dt
dy

x
Vk

dt
dx

∂
∂

−=

∂
∂

−=

Numerical Potential Functions

Potential Field

  We can compute the “true” potential
at each point x by integrating
the forces along the desired path
from the goal to x

  If we discretize the path, we get

  Let’s think about this recursively; intuitively
 potential at x is minimum over all places x’
 potential at x’ + cost of moving from x to x’

Setting up the State Space

  Again, we discretize
our configuration
space

  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y)) (min over y)
  Repeat

Numerical Potential Field

0
1 1 1
1
1 1 1

1
2
2

2 2

2 2 2 2

3
3
3

4
4
4

5
5
5

6
6
6

7
7
7

8
8
8

9
9
9

10
10
10

11
11
11

12
12
12

13
13
13

14
14
14

15
15
15

16
16
16

3 3
4 4
5 5

6 6 6
7 7 7

  The numbers shown are for an obstacle-
induced cost of 0, and a goal-induced cost of
1 unit per grid cell

Uniform Cost Regression
  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat

  Bellman-Ford’s algorithm

  After planning, for each
state, just look at the
neighbors and move to
the cheapest one,
i.e., just roll down hill

The Output Value Function

Planner Optimality
  There are two issues here

  Can the planner express the best (shortest, fastest) plan
possible?

  Will the planner find the best plan it can express?

  Your state and action spaces affect the former
  Your search strategy (search vs. Dijkstra’s algorithm,

which state in the search tree to expand next, etc.)
affects the latter

The optimal plan

But this might be the shortest
plan your planner’s state

space can represent

But this might be the plan
your planner finds if you use
a suboptimal search strategy

Planner Complexity
  Optimal search algorithms are O(d|a|) where d is the

depth of the solution in the search tree, and |a| is
the number of actions

  Dijkstra’s algorithm (and therefore the numerical
potential field) is O(n2) if implemented naively, O
(nlogn) if states are updated using priority queues,
where n is the number of states

  There’s a trade-off between the computational
complexity you can afford, and how good a plan you
need

We can use shortest path algorithm on
other State Spaces

  We can reduce the
state space size by
sampling from the
configuration space,
rather than using a
regular grid

  Potential advantages:
  More efficient search

  Potential disadvantages:
  How to connect sampled states?
  Good sampling strategies
  Limited set of possible plans

1

Running Shortest Path Algorithm on the
Probabilistic Roadmap

  Sample states randomly
  Add the start and goal

state
  Add action edges between

states x and y if you
can get from x to y with
your controller, and set
cost c(x, y)

  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat

0
1

1 4

6

6

6 8

8

10 10

2 1

1

5

4 4

2
2

2 1 2

2

2

2

2

1

Running Shortest Path Algorithm on
the Visibility Graph

  Put states at the start, goal,
and polygon corners

  Add action edges between
states x and y if you
can get from x to y with
your controller, and set
cost c(x, y)

  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat

What you should know
  Planning as search
  The design decisions in setting up a planner
  C-obstacle algorithm and grid approximation
  Different forms of search: breadth-first,

depth-first, A*
  Mapping motion planning to graph search

using v-graphs, cell decomposition, PRMs,
grids, numerical potentials

  How to decide which is best to use each

Design Choices
  What state space to use
  What set of actions to use
  What search method to use
  What cost function to use (distance, time, etc.)
  If using informed search, what heuristic to use

  The critical choice for motion planning is state space
  The other choices tend to affect computational

performance, not robot performance

Data Structures
  While there are unexpanded leaves in the tree

  Find the leaf x with the lowest value
  For each action, create a new child leaf of x
  Set the value of each child

  Let’s say that each tree node is given by
!! !public class State {!
!! ! !int id; !!
!! ! !double coordinates[2];!
!! ! !int neighbours[];!
!! ! !double priority;!
!! ! !State parent;!
!! ! !State [] children;!
!! !}

  Then as you create new children, you store them in the children array inside
the parent State

  The tree structure, however, does not automatically tell you the lowest (or
highest) priority child

  Therefore, as you add each child to the parent state in the tree, also add the
child to a sorted set (e.g., java.util.TreeSet) that has the methods add() and
first() that will let you add items and retrieve the lowest (highest) items in O
(log n) time. (NB: If using TreeSet, you would need to make sure your State
class implements the comparable interface.)

Progression vs. Regression
  Progression (forward-chaining):

  Choose action whose preconditions are satisfied
  Continue until goal state is reached

  Regression (backward-chaining):
  Choose action that has an effect that matches an unachieved

subgoal
  Add unachieved preconditions to set of subgoals
  Continue until set of unachieved subgoals is empty

  Progression: + Simple algorithm (“forward simulation”)
  Often large branching factor

  Regression: + Focused on achieving goals
  Need to reason about actions
  Regression is incomplete, in general, for functional effects

 Potential Field Controllers
  Basic idea

  Create attractive potential field to pull robot (R) toward
a goal

  Create repulsive potential field to repel robot (R) from
obstacles

  In two-dimensional space (robot is a point, goal/
obstacles are points)

  Remember: Force on a particle is given by f = -grad(V)

() []
2 , goal R d k V goal =

()obsRd
cVobs ,

=

() () ()[]2122, goalgoal yyxxgoalRd −+−=

() () ()[]2122, obsobs yyxxobsRd −+−=

Optimal vs. Satisficing
  In motion planning, we typically prefer

“shortest” paths, in distance, time, power
consumption or some other objective

  Our choice of objective function implies a cost
(or reward) function on actions

  Sometimes, we just want to find any
sequence of actions that connects the start
and the goal

Numerical Potential Functions

Potential Field

  We can compute the “true” potential
at each point x by integrating
the forces along the desired path
from the goal to x

  If we discretize the path, we get

  Let’s write this recursively:

C(x) = F(x) = ∇Uatt(x)-∇Urep(x)

