6.141;

Robotics systems and science

Lecture 9: Configuration Space and
Motion Planning

Lecture Notes Prepared by Daniela Rus
EECS/MIT

Spring 2011
Figures by Nancy Amato, Rodney Brooks, Vijay Kumar
Reading: Chapter 3, and Craig: Robotics

http://courses.csail.mit.edu/6.141/
Challenge: Build a Shelter on Mars

Announcements

= Next Lab Reports: each team member talks about
the technical piece he/she executed

= Sign up for MIT@150 Symposium: Computation and
the Transformation of Nearly Everything

During the last module we saw

= Control architectures: reactive,
behavior, deliberative

= Visibility Graphs for Motion Planning
= Started Configuration Space

Today

= Understand c-space
= Motion planning with grids
= Probabilistic motion planning

Transforming to C-Space

interaction
B ~ Transformto A~
~—}’ equivalent simpler N
roblem _
" Higher
dimension

Spatial
Point € mieracbon . Shape

Simpler problem

C-space Overview
* robot maps to a point in higher
@ dimensional space
@@ » parameter for each degree of freedom
(dof) of robot
» C-space = set of all robot placements
» C-obstacle = infeasible robot placements

C-Space
¢ Y
3D C-space P
(X,y,2) o 3D C-space
(7 (1)
6D C-space 2n-D C-space

(x,y,z,pitch,roll,yaw) (D Way Gpy Way o oo, Gy W)

C-obstacle Example

Transforming to C-Space

start ‘

Q

goal
//‘

s\
S

start

al
| D g0a

C-obstacle
for fixed robot orientation

Robpt

What if the robot can rotate?

What if the robot can rotate?

NN

How do we compute C-space

= Identify dimensions
= Compute all c-obstacles

How do we compute c-obstacles?

Step 1: Reflect Robot

C-space Algorithm

NNRNAN

N\ \

Step 2: Minkowski sum with reflected robot

C-space Algorithm

Step 2: Vert (©Robot) @ Vert (Obstacle)

C-space Algorithm

Step 3: ConvexHull (Vert (- Robot) + Vert (Obstacle))

Convex Hull Algorithm

How do we compute convex hulls?

Convex Hull Algorithm

o>
v

Convex Hull Algorithm

D C

E

o
DB

C-obstacle with Rotations

simple 2D workspace obstacle
=> complicated 3D C-obstacle

Figure from Latombe’91

Motion Planning Algorithm

(1) Compute c-obstacle for each obstacle

(Reflect points, Minkowsky sums, convex hull)

(2) Find path from start to goal for point robot

s T
s T
P

ne robots DOF dictate (1)
ne method for (2) differentiates among motion

anning algorithms

Motion Planning Summary

0
Workspace C-obst C-0
C-obst C-obst
..................... '®
y
X
A -obot e robot C-space

Path is swept volume Path is 1D curve

How do we find the path?
Recall Visibility Graphs

~
“»q
.20 goal

!
! Figure from Latombe’91

In 2D the V-graph method finds the shortest path from S to G
What about 3D?

How hard is this to compute?
The Complexity of Motion Plannin

Most motion planning problems are PSPACE-hard
[Reif 79, Hopcroft et al. 84 & 86]

The best deterministic algorithm known has running
time that is exponential in the dimension of the robot’s
C-space [canny 86]

* C-space has high dimension - 6D for rigid body in 3-space

- simple obstacles have complex C-obstacles s impractical to compute
explicit representation of freespace for high dof robots

So ... attention has turned to approximation and
randomized algorithms which

* trade full completeness of the planner

« for a major gain in efficiency

Exact Cell Decomposition
for finding path

Searching the Convex Cells
for finding path

k\/ _—-I

e “—-—

Build graph
Search for path

Approximate Cell Decomposition

mixed empty

Cell Connectivity Graph

G

Aroares

.¢

e
FotTN

SR

Probabilistic Road Maps (PRM)
for finding paths [Kavraki at al 96]

C-space

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)
- discard nodes that are invalid

2. Connect pairs of nodes to form roadmap
- simple, deterministic local planner (e.g., straightline)
- discard paths that are invalid

Query processing

1. Connect start and goal to roadmap

2. Find path in roadmap between start and goal
- _ - regenerate plans for edges in roadmap
Primitives Required:

1. Method for Sampling points in C-Space
2. Method for “validating’ points in C-Space

More PRMS

? C
[]
(]
L]

start®

< -obst)

o goal

PRMs: Pros

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMSs support fast queries w/ enough

preprocessing

Many success stories where PRMs solve previously
unsolved problems

More PRMS

-goal °

starto

goal
C-obst C-obst
-obst C-obst

start

PRMs: Pros
1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMSs support fast queries w/ enough

preprocessing

Many success stories where PRMs solve previously
unsolved problems

PRMs: Cons

1. PRMs don’t work as well for some problems:
— unlikely to sample nodes in narrow passages
— hard to sample/connect nodes on constraint surfaces

Sampling Around Obstacles
[Amato et al 98]

To Navigate Narrow Passages we must sample in them
* most PRM nodes are where planning is easy (not needed)

PRM Roadmap OBPRM Roadmap

[] @
o ° go%I
[° ° []
e (C-obst C-obst
@
®
C-obst C-obst
® A PY p o
L
@

(6]
start

Idea: Can we sample nodes near C-obstacle surfaces?
« we cannot explicitly construct the C-obstacles...
« we do have models of the (workspace) obstacles...

OBPRM: Finding points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
(robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
using binary search (collision checks)

Note: we can use more sophisticated
approaches to try to cover C-obstacle

Repairing Paths [Amato et al]

Even with the best sampling methods, roadmaps

may not contain valid solution paths
* may lack points in narrow passages
* may contain approximate paths that are nearly valid

C-obstacle

approximate
path

Repairing Paths [Amato et al]

Even with the best sampling methods, roadmaps

may not contain valid solution paths

* may lack points in narrow passages
* may contain approximate paths that are nearly valid

Repairing/Improving Approximate Paths

1. Create initial roadmap
2. Extract approximate path P
3. Repair P (push to C-free)
= Focus search around P
= Use OBPRM-like techniques

repaired
path

-obstacle

approximate
path

Algorithm Summary

= Compute c-space for each obstacle
= Compute graph representation
= Find path from start to goal

V-graph complete; gives optimal shortest path in 2d
What about 3d? What else can we optimize?

Piano Movers’ Problem

> 3D Robots |

3 DOF Motion

