
6.141:
Robotics systems and science
Lecture 9: Configuration Space and
 Motion Planning

Lecture Notes Prepared by Daniela Rus
EECS/MIT

Spring 2011
Figures by Nancy Amato, Rodney Brooks, Vijay Kumar

Reading: Chapter 3, and Craig: Robotics

 http://courses.csail.mit.edu/6.141/!
Challenge: Build a Shelter on Mars!

Announcements

  Next Lab Reports: each team member talks about
the technical piece he/she executed

  Sign up for MIT@150 Symposium: Computation and
the Transformation of Nearly Everything

  Control architectures: reactive,
behavior, deliberative

  Visibility Graphs for Motion Planning
  Started Configuration Space

During the last module we saw

Today

  Understand c-space
  Motion planning with grids
  Probabilistic motion planning

Transforming to C-Space

Higher
dimension

Simpler problem

C-space Overview
C-obst

C-obst

C-obst

C-obst

C-obst

C-Space

6D C-space
(x,y,z,pitch,roll,yaw)

3D C-space
(x,y,z) 3D C-space

(α,β,γ)
α	

β	
 γ	

•  robot maps to a point in higher
 dimensional space
•  parameter for each degree of freedom
 (dof) of robot
•  C-space = set of all robot placements
•  C-obstacle = infeasible robot placements

2n-D C-space
(φ1, ψ1, φ2, ψ2, . . . , φ n, ψ n)

C-obstacle Example

Transforming to C-Space

C-obstacle
for fixed robot orientation

Robot

What if the robot can rotate?

What if the robot can rotate?

How do we compute C-space

  Identify dimensions
  Compute all c-obstacles

How do we compute c-obstacles?

Step 1: Reflect Robot

C-space Algorithm

Step 2: Minkowski sum with reflected robot

C-space Algorithm

Step 2: Vert (- Robot) + Vert (Obstacle)

C-space Algorithm

Step 3: ConvexHull (Vert (- Robot) + Vert (Obstacle))

Convex Hull Algorithm

How do we compute convex hulls?

Convex Hull Algorithm

A

B

C D
E

Convex Hull Algorithm

A

B

C D
E

C-obstacle with Rotations
simple 2D workspace obstacle
 => complicated 3D C-obstacle

Figure from Latombe’91

 Motion Planning Algorithm
 (1) Compute c-obstacle for each obstacle
 (Reflect points, Minkowsky sums, convex hull)
 (2) Find path from start to goal for point robot

  The robots DOF dictate (1)
  The method for (2) differentiates among motion

planning algorithms

Motion Planning Summary

robot

obst

obst

obst

obst

x
y

θ

C-obst

C-obst C-obst

C-obst

robot
Path is swept volume Path is 1D curve

Workspace

C-space

How do we find the path?
Recall Visibility Graphs

In 2D the V-graph method finds the shortest path from S to G
What about 3D?

Figure from Latombe’91

Most motion planning problems are PSPACE-hard
[Reif 79, Hopcroft et al. 84 & 86]
The best deterministic algorithm known has running
time that is exponential in the dimension of the robot’s
C-space [Canny 86]
•  C-space has high dimension - 6D for rigid body in 3-space
•  simple obstacles have complex C-obstacles impractical to compute
explicit representation of freespace for high dof robots

So … attention has turned to approximation and
randomized algorithms which
•  trade full completeness of the planner
•  for a major gain in efficiency

How hard is this to compute?
The Complexity of Motion Plannin

Exact Cell Decomposition
for finding path

Searching the Convex Cells
for finding path

Build graph
Search for path

Approximate Cell Decomposition

Cell Connectivity Graph

Probabilistic Road Maps (PRM)
for finding paths [Kavraki at al 96]

1. Connect start and goal to roadmap

Query processing
start

goal

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal
 - regenerate plans for edges in roadmap

Primitives Required:
1.  Method for Sampling points in C-Space
2.  Method for `validating’ points in C-Space

More PRMS
PRMs: Pros

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough
preprocessing

Many success stories where PRMs solve previously
unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

More PRMS
PRMs: Pros

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough
preprocessing

Many success stories where PRMs solve previously
unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

PRMs: Cons

1. PRMs don’t work as well for some problems:
–  unlikely to sample nodes in narrow passages
–  hard to sample/connect nodes on constraint surfaces

start

goal

C-obst

C-obst

C-obst

C-obst

Sampling Around Obstacles
[Amato et al 98]

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
•  most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle surfaces?
•  we cannot explicitly construct the C-obstacles...
•  we do have models of the (workspace) obstacles...

OBPRM Roadmap

OBPRM: Finding points on C-obstacles

1

3

2

4
5

Basic Idea (for workspace obstacle S)
1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
approaches to try to cover C-obstacle

C-obst

Repairing Paths [Amato et al]
Even with the best sampling methods, roadmaps
may not contain valid solution paths
•  may lack points in narrow passages
•  may contain approximate paths that are nearly valid

C-obstacle

C-obstacle
approximate

path

Repairing Paths [Amato et al]

1.  Create initial roadmap
2.  Extract approximate path P
3.  Repair P (push to C-free)

  Focus search around P
  Use OBPRM-like techniques

Even with the best sampling methods, roadmaps
may not contain valid solution paths
•  may lack points in narrow passages
•  may contain approximate paths that are nearly valid

Repairing/Improving Approximate Paths
C-obstacle

C-obstacle
approximate

path

repaired
path

 Algorithm Summary
  Compute c-space for each obstacle
  Compute graph representation
  Find path from start to goal

S

G

V-graph complete; gives optimal shortest path in 2d
 What about 3d? What else can we optimize?

Piano Movers’ Problem

Donald et al 93

