6.141: Robotics systems and science Lecture 9: Configuration Space and Motion Planning

Lecture Notes Prepared by Daniela Rus EECS/MIT

Spring 2011

Figures by Nancy Amato, Rodney Brooks, Vijay Kumar

Reading: Chapter 3, and Craig: Robotics

http://courses.csail.mit.edu/6.141/
Challenge: Build a Shelter on Mars

Announcements

- Next Lab Reports: each team member talks about the technical piece he/she executed
- Sign up for MIT@150 Symposium: Computation and the Transformation of Nearly Everything

During the last module we saw

- Control architectures: reactive, behavior, deliberative
- Visibility Graphs for Motion Planning
- Started Configuration Space

Today

- Understand c-space
- Motion planning with grids
- Probabilistic motion planning

Transforming to C-Space

C-space Overview

C-obstacle Example

Transforming to C-Space

C-obstacle for fixed robot orientation

What if the robot can rotate?

What if the robot can rotate?

How do we compute C-space

- Identify dimensions
- Compute all c-obstacles

How do we compute c-obstacles?

Step 1: Reflect Robot

C-space Algorithm

Step 2: Minkowski sum with reflected robot

C-space Algorithm

Step 2: Vert (⊙Robot) ⊕ Vert (Obstacle)

C-space Algorithm

Step 3: ConvexHull (Vert (- Robot) + Vert (Obstacle))

Convex Hull Algorithm

How do we compute convex hulls?

Convex Hull Algorithm

Convex Hull Algorithm

C-obstacle with Rotations

simple 2D workspace obstacle => complicated 3D C-obstacle

Figure from Latombe '91

Motion Planning Algorithm

(1) Compute c-obstacle for each obstacle (Reflect points, Minkowsky sums, convex hull)(2) Find path from start to goal for point robot

- The robots DOF dictate (1)
- The method for (2) differentiates among motion planning algorithms

Motion Planning Summary

How do we find the path? Recall Visibility Graphs

In 2D the V-graph method finds the shortest path from S to G What about 3D?

How hard is this to compute? The Complexity of Motion Plannin

Most motion planning problems are PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]

- The best deterministic algorithm known has running time that is exponential in the dimension of the robot's C-space [Canny 86]
- C-space has high dimension 6D for rigid body in 3-space
 simple obstacles have complex C-obstacles impractical to compute explicit representation of freespace for high dof robots

So ... attention has turned to <u>approximation and</u> <u>randomized algorithms</u> which

- trade full completeness of the planner
- for a major *gain in efficiency*

Exact Cell Decomposition for finding path

Searching the Convex Cells for finding path

Build graph Search for path

Approximate Cell Decomposition

Cell Connectivity Graph

Probabilistic Road Maps (PRM) for finding paths [Kavraki at al 96]

C-space

Roadmap Construction (Pre-processing)

- Randomly generate robot configurations (nodes)
 discard nodes that are invalid
- 2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

Query processing

- 1. Connect start and goal to roadmap
- 2. Find path in roadmap between start and goal
 - regenerate plans for edges in roadmap

Primitives Required:

- 1. Method for Sampling points in C-Space
- 2. Method for `validating' points in C-Space

More PRMS

PRMs: Pros

- 1. PRMs are probabilistically complete
- 2. PRMs apply easily to high-dimensional C-space
- 3. PRMs support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously unsolved problems

More PRMS

PRMs: Pros

- 1. PRMs are probabilistically complete
- 2. PRMs apply easily to high-dimensional C-space
- 3. PRMs support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously unsolved problems

PRMs: Cons

- 1. PRMs don't work as well for some problems:
- unlikely to sample nodes in *<u>narrow passages</u>*
- hard to sample/connect nodes on constraint surfaces

Sampling Around Obstacles [Amato et al 98]

To Navigate Narrow Passages we must sample in them
most PRM nodes are where planning is easy (not needed)

Idea: Can we sample nodes near C-obstacle surfaces?

- we cannot explicitly construct the C-obstacles...
- we do have models of the (workspace) obstacles...

OBPRM: Finding points on C-obstacles

Note: we can use more sophisticated approaches to try to cover C-obstacle

Repairing Paths [Amato et al]

Even with the best sampling methods, roadmaps may not contain valid solution paths

- may lack points in narrow passages
- may contain approximate paths that are nearly valid

Repairing Paths [Amato et al]

Even with the best sampling methods, roadmaps may not contain valid solution paths

- may lack points in narrow passages
- may contain approximate paths that are nearly valid

Repairing/Improving Approximate Paths

- 1. Create initial roadmap
- 2. Extract *approximate path P*
- 3. Repair P (push to C-free)
 - Focus search around P
 - Use OBPRM-like techniques

Algorithm Summary

- Compute c-space for each obstacle
- Compute graph representation
- Find path from start to goal

V-graph complete; gives optimal shortest path in 2d What about 3d? What else can we optimize?

Piano Movers' Problem

