

RSS Lecture 3 Monday, 7 Feb 2011 Prof. Daniela Rus (includes some material by Prof. Seth Teller) Jones, Flynn & Seiger § 7.8.2 http://courses.csail.mit.edu/6.141/

Today: Control

- Early mechanical examples
- Feed-forward and Feedback control
- Terminology
- Basic controllers:
 - Feed-Forward (FF) control
 - Bang-Bang control
 - Proportional (P) control
 - The D term: Proportional-Derivative (PD) control
 - The I term: Proportional-Integral (PI) control
 - Proportional-Integral-Derivative (PID) control
- Gain selection
- Applications

The Role of Control

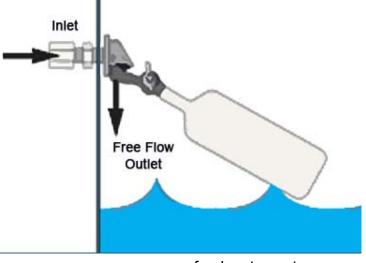
- Many tasks in robotics are defined by achievement goals
 - Go to the end of the maze
 - Push that box over here
- Other tasks in robotics are defined by *maintenance* goals:
 - Drive at 0.5m/s
 - Balance on one leg

The Role of Control

- Control theory is generally used for low-level maintenance goals
- General notions:
 - output = Controller(input)
 - output is control signal to actuator (e.g., motor voltage/current)
 - input is either goal state or goal state error (e.g., desired motor velocity)
- Controller is stateless

What is the point of control?

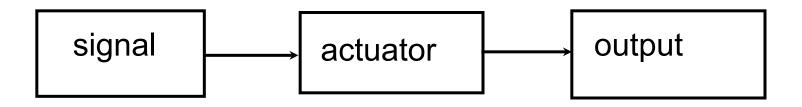
- Consider any mechanism with adjustable DOFs* (e.g. a valve, furnace, engine, car, robot...)
- Control is *purposeful variation* of these DOFs to achieve some specified *maintenance state*
 - Early mechanical examples: float valve, steam governor



www.freshwatersystems.com

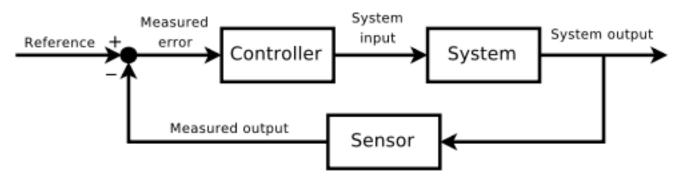
Motor Control: Open Loop

- Give robot task with no concern for the environment
- Applications: ???
- Open loop: signal to action
- Not checked if correct action was taken
- Example: go forward for 15 secs, then turn left for 10 secs. Issues?



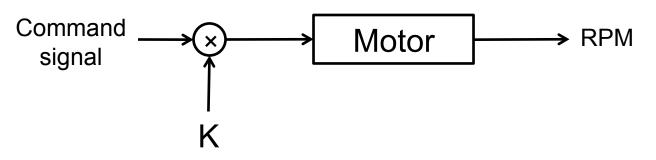
Open loop (feed-forward) control

- Open loop controller:
 - output = FF(goal)
- Example.: motor speed controller (linear):
 - V = k * s
 - V is applied voltage on motor
 - s is speed
 - k is gain term (from calibration)
- Weakness:
 - Varying load on motor => motor may not maintain goal speed



Feed-Forward (FF) Control

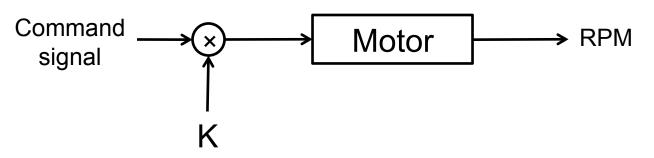
- Pass command signal from external environment directly to the *loaded element* (e.g., the motor)
- Command signal typically multiplied by a gain K



- ... Where does the gain value K come from?
- Under what conditions will FF control work well?
- You will implement an FF controller in Lab 2

Feed-Forward (FF) Control

- Pass command signal from external environment directly to the *loaded element* (e.g., the motor)
- Command signal typically multiplied by a gain K



- ... Where does the gain value K come from?
 Calibration (example: PWM = 0, PWM = 255)
- Under what conditions will FF control work well?
 When the presented load is uniform and known
- You will implement an FF controller in Lab 2

Feedback Control

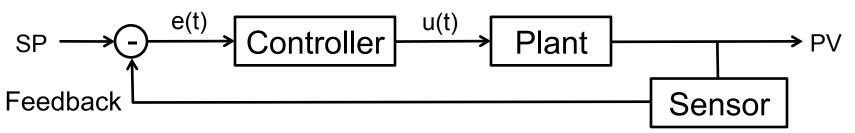
- Feedback controller:
 - output = FB(error)
 - error = goal state measured state
 - controller attempts to minimize error
- Feedback control requires sensors:
 - Binary (at goal/not at goal)
 - Direction (less than/greater than)
 - Magnitude (very bad, bad, good)

Example: Wall Following

- How would you use feedback control to implement a wall-following behavior in a robot?
- What sensors would you use, and would they provide magnitude and direction of the error?
- What will this robot's behavior look like?

Feedback Control Terminology

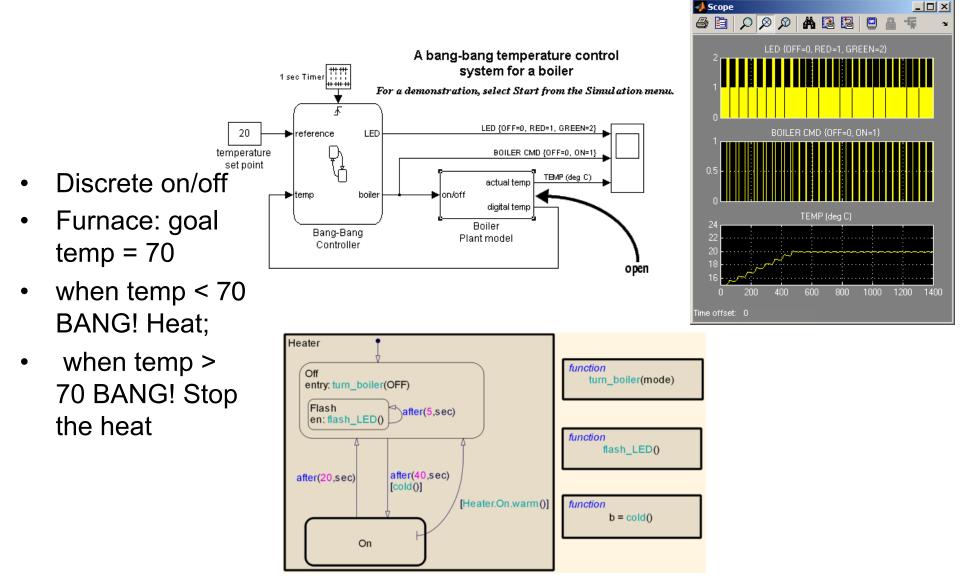
- Plant P: process commanded by a Controller
- Process Variable PV: Value of some process or system quantity of interest (e.g. temperature, speed, force, ...) as measured by a Sensor
- Set Point* SP: Desired value of that quantity



- Error signal e(t) = SP-PV: error in the process variable at time t, computed via Feedback
- Control signal u(t): controller output (value of switch, voltage, PWM, throttle, steer angle, ...)

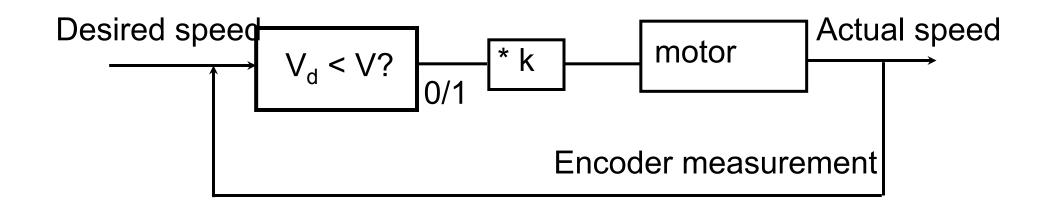
*Set point is sometimes called the "Reference"

Bang-bang control

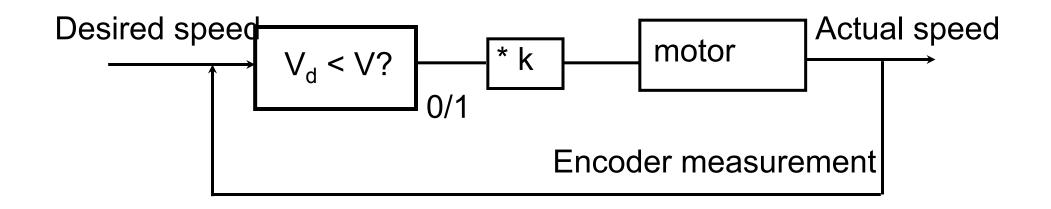


Example source: Mathworks

Bang-bang control



Bang-bang control

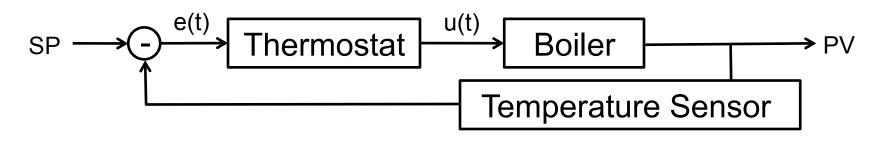


$$O(t) = k \text{ if } v(t) < V_d$$

 $O(t) = 0 \text{ otherwise}$

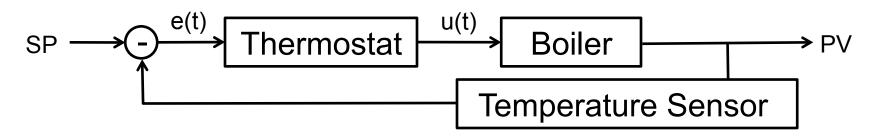
Example: Home Heating System

- Plant P:
- Process Variable PV:
- Controller: Sensor:
- Set Point SP:
- Control signal:



Example: Home Heating System

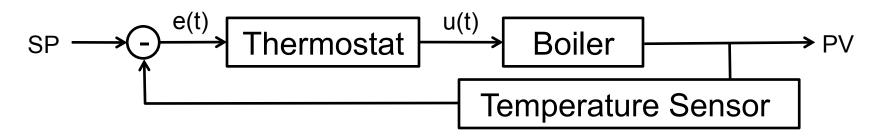
- Plant P: Boiler with on-off switch (1 = all on ; 0 = all off)
- Process Variable PV: Current home temperature
- Controller: Thermostat Sensor: Thermometer
- Set Point SP: Thermostat setting (desired temp.)
- Control signal: Boiler on-off switch $u(t) \in \{0, 1\}$



How could the function **u(t)** be implemented?

Example: Home Heating System

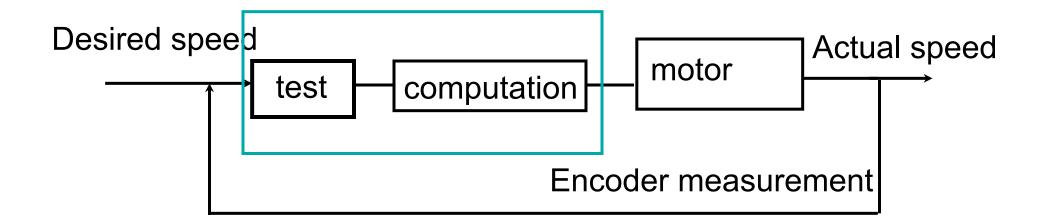
- Plant P: Boiler with on-off switch (1 = all on ; 0 = all off)
- Process Variable PV: Current home temperature
- Controller: Thermostat Sensor: Thermometer
- Set Point SP: Thermostat setting (desired temp.)
- Control signal: Boiler on-off switch $u(t) \in \{0, 1\}$



How could the function **u(t)** be implemented? u(t) = **1** if e(t) > 0 [i.e., if SP > PV], **0** otherwise

Motor Control: closed loop

- A way of getting a robot to achieve and maintain a goal state by constantly comparing current state with goal state.
- Use sensor for feedback



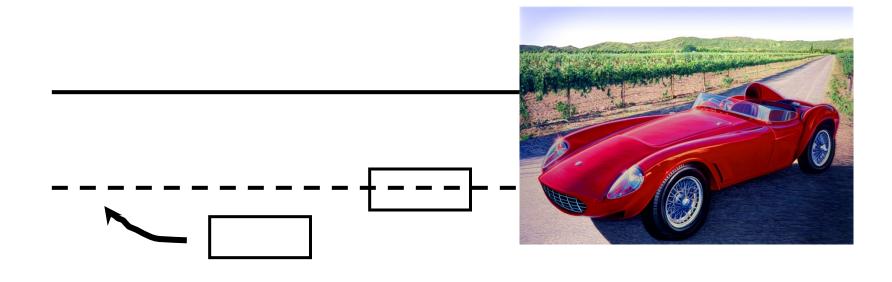
Motor Control: PID

- Control theory is the science that studies the behavior of control systems
- CurrentState DesiredState = Error
- Main types of simple linear controllers:
 - P: proportional control
 - PD: proportional derivative control
 - PI: proportional integral control
 - PID: proportional integral derivative control

• Steer a car in the center of a lane

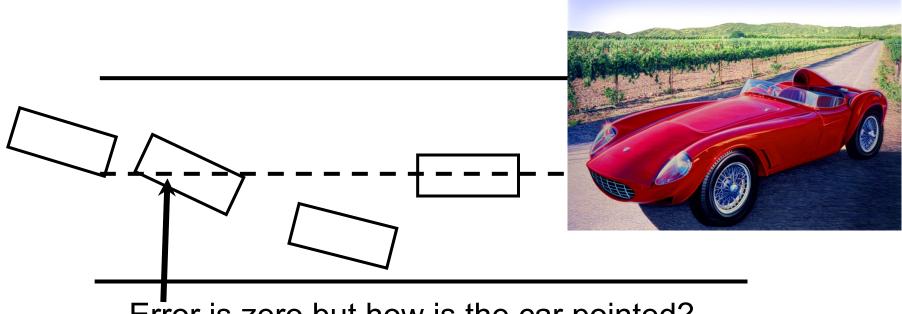


• Steer a car in the center of it lane



Observed error: distance off from center line

• Steer a car in the center of it lane



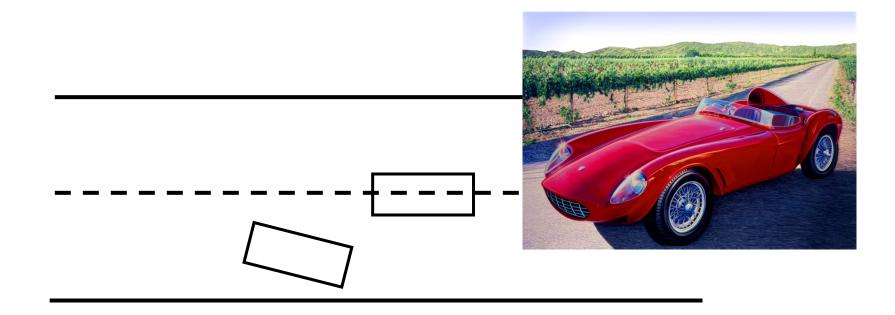
Error is zero but how is the car pointed?

What will this do to the car?

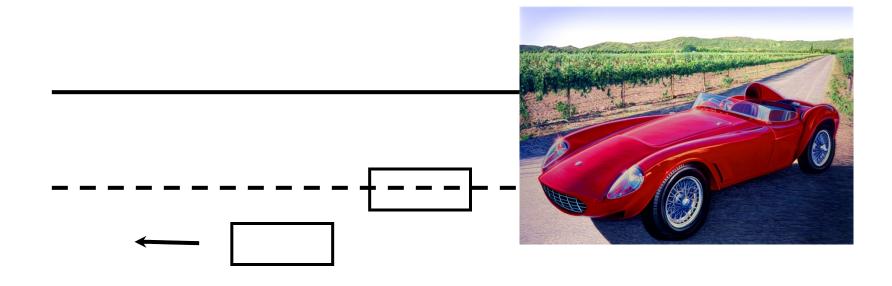
P controller is happy on line independent of orientation!

What if respond ~ rate of change ?

• Steer a car in the center of it lane



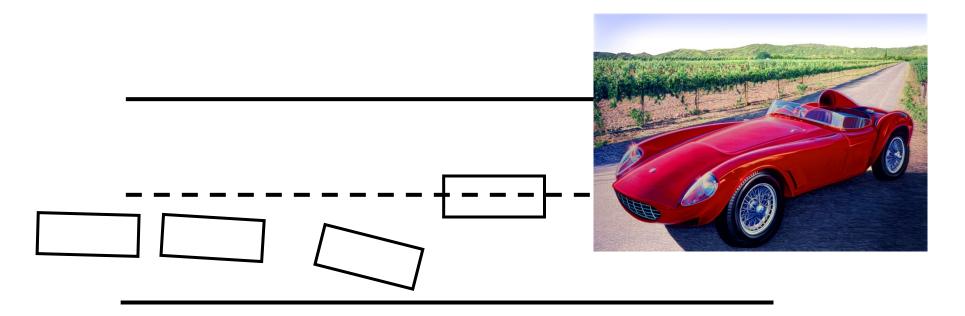
• Steer a car in the center of it lane



What is the observed rate of error? Other error?

What if respond ~ rate of change ?

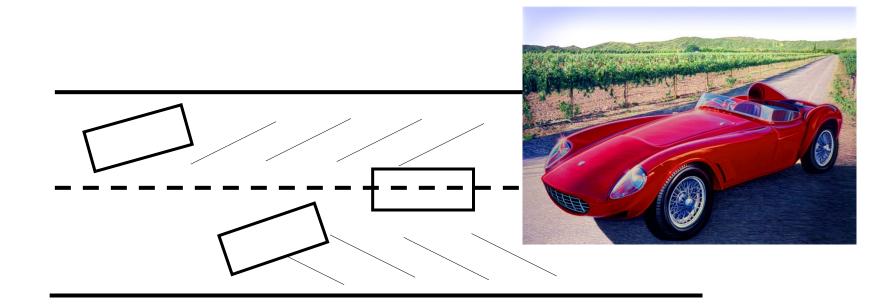
• Steer a car in the center of it lane



D controller is Happy on any parallel line!

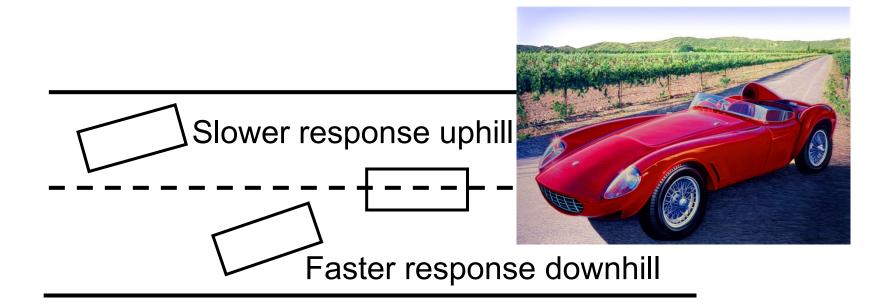
What if Road Sloped ?

• Steer a car in the center of its lane



What if Road Sloped ?

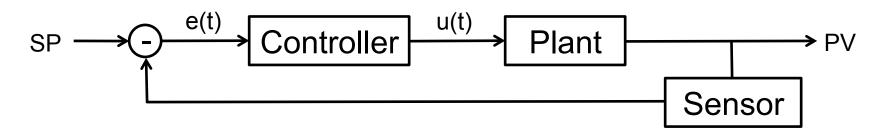
• Steer a car in the center of it lane



Gravity contributes a steady-state error

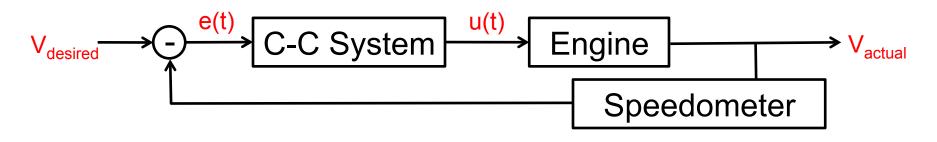
Proportional Control

- Suppose plant can be commanded by a *continuous*, rather than discrete, signal
 - Valve position to a pipeline or carburetor
 - Throttle to an internal combustion engine
 - PWM value to a DC motor
- What's a natural thing to try?
 - *Proportional* (P) Control: make the command signal a scalar multiple of the error term: $u(t) = K_P \times e(t)$



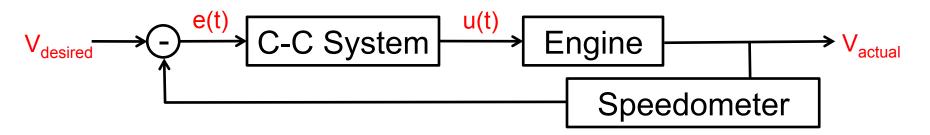
Example: Cruise Control (CC) System

- Plant P:
- Process Variable PV:
- Controller: Sensor:
- Set Point SP:
- Control signal:



Example: Cruise Control (CC) System

- *Plant* P: Engine with throttle setting $u \in [0..1]$
- Process Variable PV: Current speed V_{actual}
- Controller: C-C system Sensor: Speedometer
- Set Point SP: Desired speed V_{desired}
- Control signal: Continuous throttle value u ∈ [0..1]

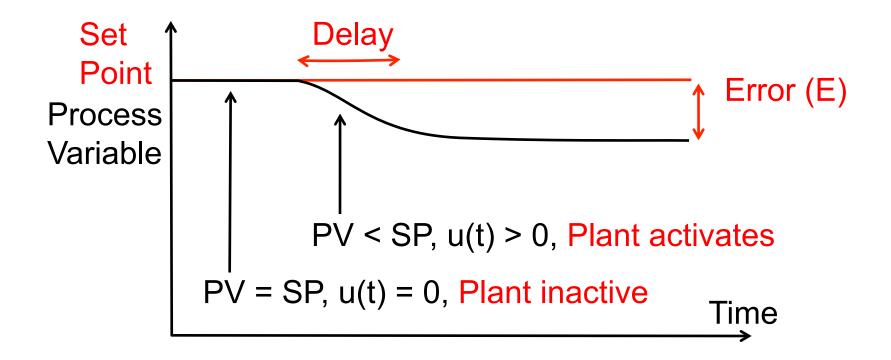


Define $e(t) = V_{desired} - V_{actual}$, $u(t) = K_P \times e(t)$, clipped to [0..1] i.e. Throttle = $K_P \times (V_{desired} - V_{actual})$ Does this controller "settle" at the desired speed? No; it exhibits **error** (E).

Proportional Control: Why E?

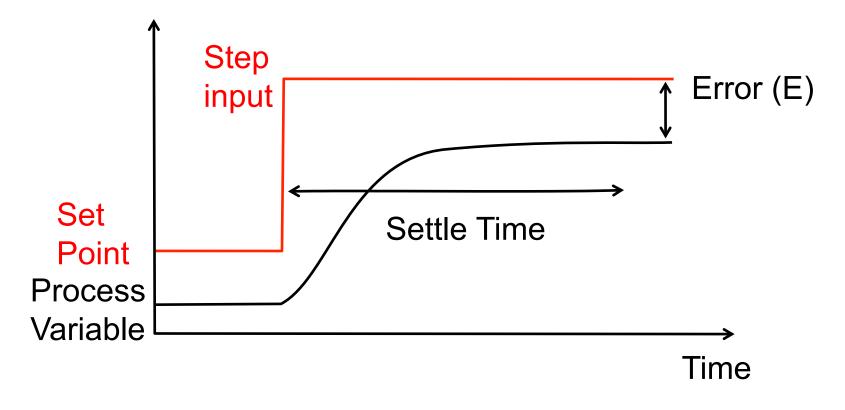
- Suppose e(t) = 0. Then $u(t) = K_P * e = 0$ (Plant inactivated)

- Process Variable deviates from Set Point, activating plant
- But any real physical system has a delayed response
- Deviation, sustained over delay interval, yields error



Why not just introduce constant term, $u(t) = A + K_P * e(t)$?

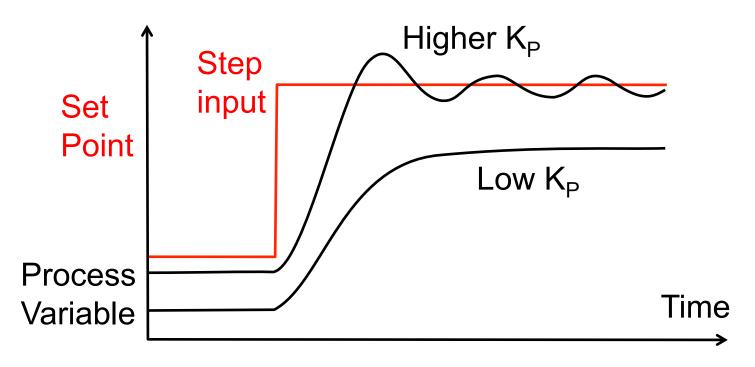
Proportional Control Step Response Notional plot and terminology:



Is E constant over time? No; it depends on load.

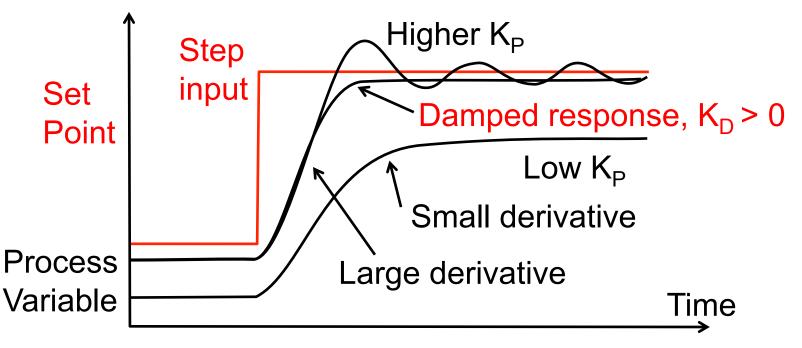
Proportional Control and Error

- Can combat E by increasing K_P ("the P gain")
- This gives a faster response and lower E!
- But increasing the gain too much leads to overshoot and instability



Combating Overshoot: The D Term

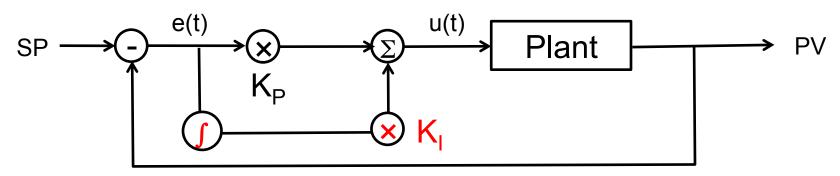
- Note the *derivative* of error in responses below
- Subtract it from output to counteract overshoot
- Then u(t) = $K_P \times e(t) + K_D \times d[e(t)] / dt$
 - K_D the "derivative" or "damping" term in PD controller



• ... But still haven't eliminated steady-state error!

Combating Steady-State Error: I Term

- Idea: apply correction based on integrated error
 - If error persists, integrated term will grow in magnitude
 - Sum proportional and integral term into control output



Then $u(t) = K_P \times e(t) + K_I \times \int e(t)$ (where the integral of the error term is taken over some specified time interval) This produces a *proportional-integral* (PI) controller

Incorporating the I term eliminates SSE by modulating the plant input so that the *time-averaged error is zero*.

Putting it All Together: PID Control

- Incorporate P, I and D terms in controller output
 - Combine as a weighted sum, using gains as weights



Then $u(t) = K_P \times e(t) + K_I \times \int e(t) + K_D \times d[e(t)] / dt$ This is a "proportional-integral-derivative" or *PID controller*

Implementation Issues

 How do we approximate K_i * ∫ err(t) dt to implement an I controller?

 How do we approximate K_d * derr/dt to implement a D controller?

PID control

• PID control combines P and D control:

 $o = K_p * i + K_i * \int i(t) dt + K_d * di/dt$ $o = K_p * err + K_i * \int err(t) dt + K_d * derr/dt$

- P component combats present error
- I component combats past (cumulative) error
- D component combats future error
- Gains must be tuned together

Ziegler-Nichols Tuning Method

Exploration: set the plant under P control and start increasing the Kp gain until loop oscillates

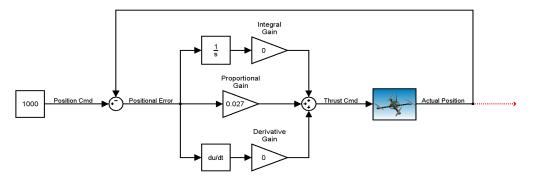
Note critical gain K_C and oscillation period T_C

	K _P	K _I	K _D
Р	0.5K _C		
PI	0.45K _C	1.2K _P /T _C	
PID	0.5K _C	2K _P /T _C	$K_PT_C/8$

Z & N developed rule using Monte Carlo method Rule useful in the absence of models

Example: Quadrotor Control Using Ziegler-Nichols Method

- Integral and Derivative gains are set to zero
- Proportional gain is increased until system oscillates in response to a step input
- This is known as the critical gain K_C, and the system oscillates with a period P_C



Calculating PID parameters

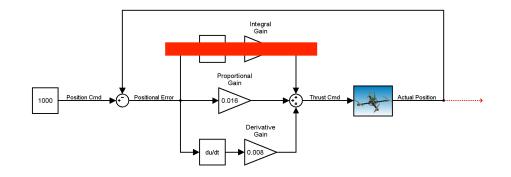
- K_P = 0.6*K_C
- K_I = 2*K_P / T_C
- $K_D = 0.125^* K_P^* T_C$

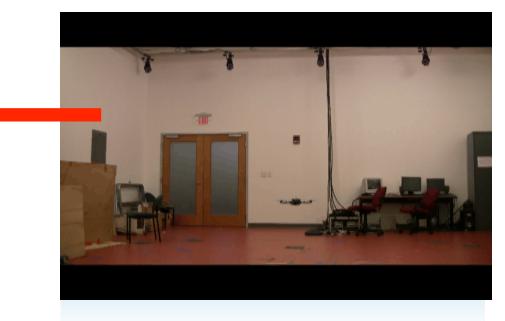
1000 Position Cmd Proportional Gain Control Control

- T_C = 4
- The Ziegler-Nichols Method is a guideline
 for experimentally obtaining 25% overshoot from a step response.

What does K_I do?

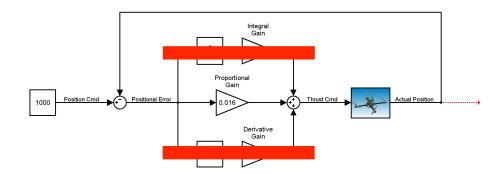
- For this system, K_I is crucial in eliminating steady state error primarily caused by gravity.
- The PD system overshoots and damping is still reasonable.





What does K_D do?

- Reasonable K_D helps minimize overshoot and settling time.
- Too much K_D leads to system instability.
- P system has unacceptable overshoot, settling time, and steady state error. However, it is stable.



Control summary

	Control type	Feedback	Pro/Con
Bang- bang	discrete	yes	Simple/ Discrete
Open loop	Control law	no	Simple/may be unrepeatable
Closed loop	P, I, D	yes	Continuous/ Tune Gains