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Today: Control 
•  Early mechanical examples 
•  Feed-forward and Feedback control 
•  Terminology 
•  Basic controllers: 

–  Feed-Forward (FF) control 
–  Bang-Bang control 
–  Proportional (P) control 
–  The D term: Proportional-Derivative (PD) control 
–  The I term: Proportional-Integral (PI) control 
–  Proportional-Integral-Derivative (PID) control 

•  Gain selection 
•  Applications 



    The Role of Control 

•   Many tasks in robotics are defined by 
achievement goals 
–   Go to the end of the maze 
–   Push that box over here 

•   Other tasks in robotics are defined by 
maintenance goals: 
–   Drive at 0.5m/s 
–   Balance on one leg 



    The Role of Control 

•   Control theory is generally used for low-level 
maintenance goals 

•   General notions: 
–   output = Controller(input) 
–   output is control signal to actuator (e.g., motor 

voltage/current) 
–   input is either goal state or goal state error (e.g., 

desired motor velocity) 
•   Controller is stateless 



•  Consider any mechanism with adjustable DOFs* 
(e.g. a valve, furnace, engine, car, robot…) 

•  Control is purposeful variation of these DOFs  
to achieve some specified maintenance state 
–  Early mechanical examples:  float valve, steam governor 

What is the point of control? 

www.freshwatersystems.com 

*DOFs = Degrees of Freedom 



Motor Control: Open Loop 

•  Give robot task with no concern for the 
environment 

•  Applications: ??? 
•  Open loop: signal to action 
•  Not checked if correct action was taken 
•  Example: go forward for 15 secs, then turn 

left for 10 secs. Issues? 

signal actuator output 



Open loop (feed-forward) control 
•   Open loop controller: 

–   output = FF(goal) 

•   Example.: motor speed controller (linear): 
–   V = k * s 
–   V is applied voltage on motor 
–   s is speed 
–   k is gain term (from calibration) 

•   Weakness: 
–   Varying load on motor => motor may not maintain goal 

speed  



 Feed-Forward (FF) Control 
•  Pass command signal from external environment 

directly to the loaded element (e.g., the motor) 
•  Command signal typically multiplied by a gain K 

•  … Where does the gain value K come from? 

•  Under what conditions will FF control work well? 

•  You will implement an FF controller in Lab 2 

Motor Command 
signal 

× RPM 

K 



 Feed-Forward (FF) Control 
•  Pass command signal from external environment 

directly to the loaded element (e.g., the motor) 
•  Command signal typically multiplied by a gain K 

•  … Where does the gain value K come from? 
–  Calibration (example: PWM = 0, PWM = 255) 

•  Under what conditions will FF control work well? 
–  When the presented load is uniform and known 

•  You will implement an FF controller in Lab 2 

Motor Command 
signal 

× RPM 

K 



Feedback Control 

•   Feedback controller: 
–   output = FB(error) 
–   error = goal state - measured state 
–   controller attempts to minimize error 

•   Feedback control requires sensors: 
–   Binary (at goal/not at goal) 
–   Direction (less than/greater than) 
–   Magnitude (very bad, bad, good) 



•   How would you use feedback control to 
implement a wall-following behavior in a robot? 

•   What sensors would you use, and would they 
provide magnitude and direction of the error?  

•   What will this robot's behavior look like?  

Example: Wall Following 



Feedback Control Terminology 
•  Plant P: process commanded by a Controller 
•  Process Variable PV: Value of some process 

or system quantity of interest (e.g. temperature, 
speed, force, …) as measured by a Sensor 

•  Set Point* SP: Desired value of that quantity 

•  Error signal e(t) = SP-PV: error in the process 
variable at time t, computed via Feedback 

•  Control signal u(t): controller output (value of 
switch, voltage, PWM, throttle, steer angle, …) 

Controller Plant 

Sensor 

SP - PV 
e(t) u(t) 

Feedback 

*Set point is sometimes called the “Reference” 



Bang-bang control 

Example source: Mathworks 

•  Discrete on/off  
•  Furnace: goal 

temp = 70  
•  when temp < 70 

BANG! Heat;  
•   when temp > 

70 BANG! Stop 
the heat 



Bang-bang control 

Desired speed Actual speed 
Vd < V? 

0/1 
* k motor 

Encoder measurement 

O(t) =  
O(t) = 



Bang-bang control 

Desired speed Actual speed 
Vd < V? 

0/1 
* k motor 

Encoder measurement 

O(t) = k if v(t) < Vd 
O(t) = 0 otherwise 



Example: Home Heating System   
•  Plant P: 
•  Process Variable PV: 
•  Controller:    Sensor: 
•  Set Point SP: 
•  Control signal: 

Thermostat Boiler 

Temperature Sensor  

SP - PV 
e(t) u(t) 



Example: Home Heating System   
•  Plant P: Boiler with on-off switch (1 = all on ; 0 = all off) 
•  Process Variable PV: Current home temperature 
•  Controller: Thermostat   Sensor: Thermometer 
•  Set Point SP: Thermostat setting (desired temp.) 
•  Control signal: Boiler on-off switch u(t) ∈ {0, 1}  

Thermostat Boiler 

Temperature Sensor  

SP - PV 
e(t) u(t) 

How could the function u(t) be implemented? 



Example: Home Heating System   
•  Plant P: Boiler with on-off switch (1 = all on ; 0 = all off) 
•  Process Variable PV: Current home temperature 
•  Controller: Thermostat   Sensor: Thermometer 
•  Set Point SP: Thermostat setting (desired temp.) 
•  Control signal: Boiler on-off switch u(t) ∈ {0, 1}  

Thermostat Boiler 

Temperature Sensor  

SP - PV 
e(t) u(t) 

How could the function u(t) be implemented? 
 u(t) = 1 if e(t) > 0 [i.e., if SP > PV], 0 otherwise 



Motor Control: closed loop 

•  A way of getting a robot to achieve and 
maintain a goal state by constantly comparing 
current state with goal state. 

•  Use sensor for feedback 

Desired speed Actual speed 
computation test motor 

Encoder measurement 



•   Control theory is the science that studies the 
behavior of control systems 

•  CurrentState - DesiredState = Error 
•  Main types of simple linear controllers:  

–   P: proportional control 
–   PD: proportional derivative control 
–   PI: proportional integral control 
–   PID: proportional integral derivative control  

Motor Control: PID 



Example: driving 

•  Steer a car in the center of a lane 



Example: driving 

•  Steer a car in the center of it lane 

Observed error: distance off from center line 



Example: driving 

•  Steer a car in the center of it lane 

Error is zero but how is the car pointed? 
What will this do to the car? 
P controller is happy on line independent of orientation! 



What if respond ~ rate of change ? 
•  Steer a car in the center of it lane 



Example: driving 

•  Steer a car in the center of it lane 

What is the observed rate of error? 
Other error? 



What if respond ~ rate of change ? 
•  Steer a car in the center of it lane 

D controller is Happy on any parallel line! 



What if Road Sloped ? 
•  Steer a car in the center of its lane 



What if Road Sloped ? 
•  Steer a car in the center of it lane 

Gravity contributes a steady-state error 

Faster response downhill 

Slower response uphill 



Proportional Control 
•  Suppose plant can be commanded by a  

continuous, rather than discrete, signal 
–  Valve position to a pipeline or carburetor 
–  Throttle to an internal combustion engine 
–  PWM value to a DC motor 

•  What’s a natural thing to try? 
–  Proportional (P) Control: make the command signal 

a scalar multiple of the error term: u(t) = KP × e(t) 

Controller Plant 

Sensor 

SP - PV 
e(t) u(t) 



Example: Cruise Control (CC) System 
•  Plant P: 
•  Process Variable PV: 
•  Controller:   Sensor: 
•  Set Point SP: 
•  Control signal: 

C-C System Engine 

Speedometer 

Vdesired - Vactual 
e(t) u(t) 



Example: Cruise Control (CC) System 
•  Plant P: Engine with throttle setting u ∈ [0..1] 
•  Process Variable PV: Current speed Vactual 
•  Controller: C-C system   Sensor: Speedometer 
•  Set Point SP: Desired speed Vdesired 
•  Control signal: Continuous throttle value u ∈ [0..1] 

C-C System Engine 

Speedometer 

Vdesired - Vactual 
e(t) u(t) 

Define e(t) = Vdesired-Vactual, u(t) = KP × e(t), clipped to [0..1]  
   i.e. Throttle = KP × (Vdesired - Vactual) 
Does this controller “settle” at the desired speed? 

 No; it exhibits error (E). 



Proportional Control: Why E? 

Process 
Variable 

Error (E) 

Set 
Point 

Time 

–  Suppose e(t) = 0. Then u(t) = KP * e = 0 (Plant inactivated) 
–  Process Variable deviates from Set Point, activating plant  
–  But any real physical system has a delayed response 
–  Deviation, sustained over delay interval, yields error 

PV = SP, u(t) = 0, Plant inactive  

PV < SP, u(t) > 0, Plant activates 

Why not just introduce constant term, u(t) = A + KP * e(t) ? 

Delay 



Proportional Control Step Response 

Process 
Variable 

Error (E) 
Step 
input 

Set 
Point 

Time 

Settle Time 

Is E constant over time?  No; it depends on load. 

Notional plot and terminology: 



Proportional Control and Error 
•  Can combat E by increasing KP (“the P gain”) 
•  This gives a faster response and lower E! 
•  But increasing the gain too much leads to 

overshoot and instability 

Process 
Variable 

Low KP 

Higher KP 
Step 
input Set 

Point 

Time 



Combating Overshoot: The D Term 
•  Note the derivative of error in responses below 
•  Subtract it from output to counteract overshoot 
•  Then u(t) = KP × e(t) + KD × d [e(t)] / dt 

–   KD the “derivative” or “damping” term in PD controller 

Process 
Variable 

Low KP 

Higher KP Step 
input Set 

Point 

Time 
Large derivative  

Small derivative  

Damped response, KD > 0 

•  … But still haven’t eliminated steady-state error! 



Combating Steady-State Error: I Term 
•  Idea: apply correction based on integrated error 

–  If error persists, integrated term will grow in magnitude 
–  Sum proportional and integral term into control output 

Plant - 
e(t) u(t) 

× 

∫ × 

Σ	


KP 
KI 

SP PV 

Then u(t) = KP × e(t) + KI × ∫ e(t)  (where the integral of 
the error term is taken over some specified time interval) 
This produces a proportional-integral (PI) controller 

Incorporating the I term eliminates SSE by modulating 
the plant input so that the time-averaged error is zero. 



Putting it All Together:  PID Control 
•  Incorporate P, I and D terms in controller output 

–  Combine as a weighted sum, using gains as weights 

Plant - e(t) u(t) × 

∫ × 

Σ	


KP 
KI 

SP PV 

Then u(t) = KP × e(t) + KI × ∫ e(t) + KD × d [e(t)] / dt 
This is a “proportional-integral-derivative” or PID controller 

d/dt × KD 



Implementation Issues 

•   How do we approximate Ki * ∫ err(t) dt to 
implement an I controller? 

•  How do we approximate Kd * derr/dt to 
implement a D controller? 



    PID control 

•   PID control combines P and D control: 
      o = Kp * i + Ki * ∫ i(t) dt  + Kd * di/dt 
      o = Kp * err + Ki * ∫ err(t) dt  + Kd * derr/dt 

•   P component combats present error 
•   I component combats past (cumulative) error 
•   D component combats future error 
•   Gains must be tuned together 



Ziegler-Nichols Tuning Method 

KP KI KD 

P 0.5KC 

PI 0.45KC 1.2KP/TC 

PID 0.5KC 2KP/TC KPTC/8 

Exploration: set the plant under P control and start increasing 
                  the Kp gain until loop oscillates 
                  Note critical gain KC and oscillation period TC 

Z & N developed rule using Monte Carlo method 
Rule useful in the absence of models 



Example: Quadrotor Control 
Using Ziegler-Nichols Method 

  Integral and Derivative 
gains are set to zero 

  Proportional gain is 
increased until system 
oscillates in response to 
a step input 

  This is known as the 
critical gain KC, and the 
system oscillates with a 
period PC 



Calculating PID parameters 

  KP = 0.6*KC 

  KI = 2*KP / TC 

  KD = 0.125*KP*TC 

  TC = 4 

  The Ziegler-Nichols 
Method is a guideline 
for experimentally 
obtaining 25% 
overshoot from a step 
response. 



What does KI do? 

  For this system, KI is 
crucial in eliminating 
steady state error 
primarily caused by 
gravity. 

  The PD system 
overshoots and 
damping is still 
reasonable. 



What does KD do? 

  Reasonable KD helps 
minimize overshoot 
and settling time. 

  Too much KD leads to 
system instability. 

  P system has 
unacceptable 
overshoot, settling 
time, and steady state 
error.  However, it is 
stable. 



    Control summary 
Control type Feedback Pro/Con 

Bang-
bang discrete yes Simple/ 

Discrete      

Open 
loop Control law no 

Simple/may 
be 

unrepeatable 

Closed 
loop P,  I, D yes Continuous/ 

Tune Gains 


