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Today: Control 
•  Early mechanical examples 
•  Feed-forward and Feedback control 
•  Terminology 
•  Basic controllers: 

–  Feed-Forward (FF) control 
–  Bang-Bang control 
–  Proportional (P) control 
–  The D term: Proportional-Derivative (PD) control 
–  The I term: Proportional-Integral (PI) control 
–  Proportional-Integral-Derivative (PID) control 

•  Gain selection 
•  Applications 



    The Role of Control 

•   Many tasks in robotics are defined by 
achievement goals 
–   Go to the end of the maze 
–   Push that box over here 

•   Other tasks in robotics are defined by 
maintenance goals: 
–   Drive at 0.5m/s 
–   Balance on one leg 



    The Role of Control 

•   Control theory is generally used for low-level 
maintenance goals 

•   General notions: 
–   output = Controller(input) 
–   output is control signal to actuator (e.g., motor 

voltage/current) 
–   input is either goal state or goal state error (e.g., 

desired motor velocity) 
•   Controller is stateless 



•  Consider any mechanism with adjustable DOFs* 
(e.g. a valve, furnace, engine, car, robot…) 

•  Control is purposeful variation of these DOFs  
to achieve some specified maintenance state 
–  Early mechanical examples:  float valve, steam governor 

What is the point of control? 

www.freshwatersystems.com 

*DOFs = Degrees of Freedom 



Motor Control: Open Loop 

•  Give robot task with no concern for the 
environment 

•  Applications: ??? 
•  Open loop: signal to action 
•  Not checked if correct action was taken 
•  Example: go forward for 15 secs, then turn 

left for 10 secs. Issues? 

signal actuator output 



Open loop (feed-forward) control 
•   Open loop controller: 

–   output = FF(goal) 

•   Example.: motor speed controller (linear): 
–   V = k * s 
–   V is applied voltage on motor 
–   s is speed 
–   k is gain term (from calibration) 

•   Weakness: 
–   Varying load on motor => motor may not maintain goal 

speed  



 Feed-Forward (FF) Control 
•  Pass command signal from external environment 

directly to the loaded element (e.g., the motor) 
•  Command signal typically multiplied by a gain K 

•  … Where does the gain value K come from? 

•  Under what conditions will FF control work well? 

•  You will implement an FF controller in Lab 2 

Motor Command 
signal 

× RPM 

K 



 Feed-Forward (FF) Control 
•  Pass command signal from external environment 

directly to the loaded element (e.g., the motor) 
•  Command signal typically multiplied by a gain K 

•  … Where does the gain value K come from? 
–  Calibration (example: PWM = 0, PWM = 255) 

•  Under what conditions will FF control work well? 
–  When the presented load is uniform and known 

•  You will implement an FF controller in Lab 2 

Motor Command 
signal 

× RPM 

K 



Feedback Control 

•   Feedback controller: 
–   output = FB(error) 
–   error = goal state - measured state 
–   controller attempts to minimize error 

•   Feedback control requires sensors: 
–   Binary (at goal/not at goal) 
–   Direction (less than/greater than) 
–   Magnitude (very bad, bad, good) 



•   How would you use feedback control to 
implement a wall-following behavior in a robot? 

•   What sensors would you use, and would they 
provide magnitude and direction of the error?  

•   What will this robot's behavior look like?  

Example: Wall Following 



Feedback Control Terminology 
•  Plant P: process commanded by a Controller 
•  Process Variable PV: Value of some process 

or system quantity of interest (e.g. temperature, 
speed, force, …) as measured by a Sensor 

•  Set Point* SP: Desired value of that quantity 

•  Error signal e(t) = SP-PV: error in the process 
variable at time t, computed via Feedback 

•  Control signal u(t): controller output (value of 
switch, voltage, PWM, throttle, steer angle, …) 

Controller Plant 

Sensor 

SP - PV 
e(t) u(t) 

Feedback 

*Set point is sometimes called the “Reference” 



Bang-bang control 

Example source: Mathworks 

•  Discrete on/off  
•  Furnace: goal 

temp = 70  
•  when temp < 70 

BANG! Heat;  
•   when temp > 

70 BANG! Stop 
the heat 



Bang-bang control 

Desired speed Actual speed 
Vd < V? 

0/1 
* k motor 

Encoder measurement 

O(t) =  
O(t) = 



Bang-bang control 

Desired speed Actual speed 
Vd < V? 

0/1 
* k motor 

Encoder measurement 

O(t) = k if v(t) < Vd 
O(t) = 0 otherwise 



Example: Home Heating System   
•  Plant P: 
•  Process Variable PV: 
•  Controller:    Sensor: 
•  Set Point SP: 
•  Control signal: 

Thermostat Boiler 

Temperature Sensor  

SP - PV 
e(t) u(t) 



Example: Home Heating System   
•  Plant P: Boiler with on-off switch (1 = all on ; 0 = all off) 
•  Process Variable PV: Current home temperature 
•  Controller: Thermostat   Sensor: Thermometer 
•  Set Point SP: Thermostat setting (desired temp.) 
•  Control signal: Boiler on-off switch u(t) ∈ {0, 1}  

Thermostat Boiler 

Temperature Sensor  

SP - PV 
e(t) u(t) 

How could the function u(t) be implemented? 



Example: Home Heating System   
•  Plant P: Boiler with on-off switch (1 = all on ; 0 = all off) 
•  Process Variable PV: Current home temperature 
•  Controller: Thermostat   Sensor: Thermometer 
•  Set Point SP: Thermostat setting (desired temp.) 
•  Control signal: Boiler on-off switch u(t) ∈ {0, 1}  

Thermostat Boiler 

Temperature Sensor  

SP - PV 
e(t) u(t) 

How could the function u(t) be implemented? 
 u(t) = 1 if e(t) > 0 [i.e., if SP > PV], 0 otherwise 



Motor Control: closed loop 

•  A way of getting a robot to achieve and 
maintain a goal state by constantly comparing 
current state with goal state. 

•  Use sensor for feedback 

Desired speed Actual speed 
computation test motor 

Encoder measurement 



•   Control theory is the science that studies the 
behavior of control systems 

•  CurrentState - DesiredState = Error 
•  Main types of simple linear controllers:  

–   P: proportional control 
–   PD: proportional derivative control 
–   PI: proportional integral control 
–   PID: proportional integral derivative control  

Motor Control: PID 



Example: driving 

•  Steer a car in the center of a lane 



Example: driving 

•  Steer a car in the center of it lane 

Observed error: distance off from center line 



Example: driving 

•  Steer a car in the center of it lane 

Error is zero but how is the car pointed? 
What will this do to the car? 
P controller is happy on line independent of orientation! 



What if respond ~ rate of change ? 
•  Steer a car in the center of it lane 



Example: driving 

•  Steer a car in the center of it lane 

What is the observed rate of error? 
Other error? 



What if respond ~ rate of change ? 
•  Steer a car in the center of it lane 

D controller is Happy on any parallel line! 



What if Road Sloped ? 
•  Steer a car in the center of its lane 



What if Road Sloped ? 
•  Steer a car in the center of it lane 

Gravity contributes a steady-state error 

Faster response downhill 

Slower response uphill 



Proportional Control 
•  Suppose plant can be commanded by a  

continuous, rather than discrete, signal 
–  Valve position to a pipeline or carburetor 
–  Throttle to an internal combustion engine 
–  PWM value to a DC motor 

•  What’s a natural thing to try? 
–  Proportional (P) Control: make the command signal 

a scalar multiple of the error term: u(t) = KP × e(t) 

Controller Plant 

Sensor 

SP - PV 
e(t) u(t) 



Example: Cruise Control (CC) System 
•  Plant P: 
•  Process Variable PV: 
•  Controller:   Sensor: 
•  Set Point SP: 
•  Control signal: 

C-C System Engine 

Speedometer 

Vdesired - Vactual 
e(t) u(t) 



Example: Cruise Control (CC) System 
•  Plant P: Engine with throttle setting u ∈ [0..1] 
•  Process Variable PV: Current speed Vactual 
•  Controller: C-C system   Sensor: Speedometer 
•  Set Point SP: Desired speed Vdesired 
•  Control signal: Continuous throttle value u ∈ [0..1] 

C-C System Engine 

Speedometer 

Vdesired - Vactual 
e(t) u(t) 

Define e(t) = Vdesired-Vactual, u(t) = KP × e(t), clipped to [0..1]  
   i.e. Throttle = KP × (Vdesired - Vactual) 
Does this controller “settle” at the desired speed? 

 No; it exhibits error (E). 



Proportional Control: Why E? 

Process 
Variable 

Error (E) 

Set 
Point 

Time 

–  Suppose e(t) = 0. Then u(t) = KP * e = 0 (Plant inactivated) 
–  Process Variable deviates from Set Point, activating plant  
–  But any real physical system has a delayed response 
–  Deviation, sustained over delay interval, yields error 

PV = SP, u(t) = 0, Plant inactive  

PV < SP, u(t) > 0, Plant activates 

Why not just introduce constant term, u(t) = A + KP * e(t) ? 

Delay 



Proportional Control Step Response 

Process 
Variable 

Error (E) 
Step 
input 

Set 
Point 

Time 

Settle Time 

Is E constant over time?  No; it depends on load. 

Notional plot and terminology: 



Proportional Control and Error 
•  Can combat E by increasing KP (“the P gain”) 
•  This gives a faster response and lower E! 
•  But increasing the gain too much leads to 

overshoot and instability 

Process 
Variable 

Low KP 

Higher KP 
Step 
input Set 

Point 

Time 



Combating Overshoot: The D Term 
•  Note the derivative of error in responses below 
•  Subtract it from output to counteract overshoot 
•  Then u(t) = KP × e(t) + KD × d [e(t)] / dt 

–   KD the “derivative” or “damping” term in PD controller 

Process 
Variable 

Low KP 

Higher KP Step 
input Set 

Point 

Time 
Large derivative  

Small derivative  

Damped response, KD > 0 

•  … But still haven’t eliminated steady-state error! 



Combating Steady-State Error: I Term 
•  Idea: apply correction based on integrated error 

–  If error persists, integrated term will grow in magnitude 
–  Sum proportional and integral term into control output 

Plant - 
e(t) u(t) 

× 

∫ × 

Σ	



KP 
KI 

SP PV 

Then u(t) = KP × e(t) + KI × ∫ e(t)  (where the integral of 
the error term is taken over some specified time interval) 
This produces a proportional-integral (PI) controller 

Incorporating the I term eliminates SSE by modulating 
the plant input so that the time-averaged error is zero. 



Putting it All Together:  PID Control 
•  Incorporate P, I and D terms in controller output 

–  Combine as a weighted sum, using gains as weights 

Plant - e(t) u(t) × 

∫ × 

Σ	



KP 
KI 

SP PV 

Then u(t) = KP × e(t) + KI × ∫ e(t) + KD × d [e(t)] / dt 
This is a “proportional-integral-derivative” or PID controller 

d/dt × KD 



Implementation Issues 

•   How do we approximate Ki * ∫ err(t) dt to 
implement an I controller? 

•  How do we approximate Kd * derr/dt to 
implement a D controller? 



    PID control 

•   PID control combines P and D control: 
      o = Kp * i + Ki * ∫ i(t) dt  + Kd * di/dt 
      o = Kp * err + Ki * ∫ err(t) dt  + Kd * derr/dt 

•   P component combats present error 
•   I component combats past (cumulative) error 
•   D component combats future error 
•   Gains must be tuned together 



Ziegler-Nichols Tuning Method 

KP KI KD 

P 0.5KC 

PI 0.45KC 1.2KP/TC 

PID 0.5KC 2KP/TC KPTC/8 

Exploration: set the plant under P control and start increasing 
                  the Kp gain until loop oscillates 
                  Note critical gain KC and oscillation period TC 

Z & N developed rule using Monte Carlo method 
Rule useful in the absence of models 



Example: Quadrotor Control 
Using Ziegler-Nichols Method 

  Integral and Derivative 
gains are set to zero 

  Proportional gain is 
increased until system 
oscillates in response to 
a step input 

  This is known as the 
critical gain KC, and the 
system oscillates with a 
period PC 



Calculating PID parameters 

  KP = 0.6*KC 

  KI = 2*KP / TC 

  KD = 0.125*KP*TC 

  TC = 4 

  The Ziegler-Nichols 
Method is a guideline 
for experimentally 
obtaining 25% 
overshoot from a step 
response. 



What does KI do? 

  For this system, KI is 
crucial in eliminating 
steady state error 
primarily caused by 
gravity. 

  The PD system 
overshoots and 
damping is still 
reasonable. 



What does KD do? 

  Reasonable KD helps 
minimize overshoot 
and settling time. 

  Too much KD leads to 
system instability. 

  P system has 
unacceptable 
overshoot, settling 
time, and steady state 
error.  However, it is 
stable. 



    Control summary 
Control type Feedback Pro/Con 

Bang-
bang discrete yes Simple/ 

Discrete      

Open 
loop Control law no 

Simple/may 
be 

unrepeatable 

Closed 
loop P,  I, D yes Continuous/ 

Tune Gains 


