Motor Control |

RSS Lecture 3
Monday, 7 Feb 2011
Prof. Daniela Rus
(includes some material by Prof. Seth Teller)

Jones, Flynn & Seiger § 7.8.2

http://courses.csail.mit.edu/6.141/

Today: Control

» Early mechanical examples
 Feed-forward and Feedback control
* Terminology

* Basic controllers:
— Feed-Forward (FF) control
— Bang-Bang control
— Proportional (P) control
— The D term: Proportional-Derivative (PD) control
— The | term: Proportional-Integral (Pl) control
— Proportional-Integral-Derivative (PID) control

 (Gain selection
* Applications

The Role of Control

« Many tasks in robotics are defined by
achievement goals

— Go to the end of the maze
— Push that box over here
« Other tasks in robotics are defined by
maintenance goals:
— Drive at 0.5m/s
— Balance on one leg

The Role of Control

« Control theory is generally used for low-level
maintenance goals

 (General notions:
— output = Controller(input)

— output is control signal to actuator (e.g., motor
voltage/current)

— input is either goal state or goal state error (e.g.,
desired motor velocity)

e Controller is stateless

What is the point of control?

* Consider any mechanism with adjustable DOFs*
(e.g. a valve, furnace, engine, car, robot...)

» Control is purposeful variation of these DOFs

to achieve some specified maintenance state
— Early mechanical examples: float valve, steam governor

Inlet

"

Free Flow
Outlet

-

www.freshwatersystems.com

*DOFs = Degrees of Freedom

Motor Control: Open Loop

Give robot task with no concern for the
environment

Applications: ?7?
Open loop: signal to action
Not checked if correct action was taken

Example: go forward for 15 secs, then turn
left for 10 secs. Issues?

signal .| actuator { output

Open loop (feed-forward) control

Open loop controller:
— output = FF(goal)

Example.: motor speed controller (linear):

— V=k*s

— Vs applied voltage on motor
— S is speed

— Kk is gain term (from calibration)
Weakness:

— Varying load on motor => motor may not maintain goal

speed

Measured System

Reference -+ error input

System output

»| Controller p—————3p! System
Measured output

Sensor |«

>

Feed-Forward (FF) Control

« Pass command signal from external environment
directly to the loaded element (e.g., the motor)

« Command signal typically multiplied by a gain K

—> RPM

Command
‘>
signal %x Motor

K

* ... Where does the gain value K come from?

 Under what conditions will FF control work well?

You will implement an FF controller in Lab 2

Feed-Forward (FF) Control

« Pass command signal from external environment
directly to the loaded element (e.g., the motor)

« Command signal typically multiplied by a gain K

Command
—> > RPM
signal >(x)— Motor

K

* ... Where does the gain value K come from?
— Calibration (example: PWM = 0, PWM = 255)

» Under what conditions will FF control work well?
— When the presented load is uniform and known

You will implement an FF controller in Lab 2

Feedback Control

* Feedback controller:
— output = FB(error)
— error = goal state - measured state
— controller attempts to minimize error

 Feedback control requires sensors:
— Binary (at goal/not at goal)
— Direction (less than/greater than)
— Magnitude (very bad, bad, good)

Example: Wall Following

 How would you use feedback control to
implement a wall-following behavior in a robot?

* What sensors would you use, and would they
provide magnitude and direction of the error?

 What will this robot's behavior look like?

Feedback Control Terminology

* Plant P: process commanded by a Controller

* Process Variable PV: Value of some process
or system quantity of interest (e.g. temperature,
speed, force, ...) as measured by a Sensor

« Set Point™ SP: Desired value of that quantity

t

t
SP %@—ﬂ* Controller VAR Plant > PV

Feedback Sensor

* Error signal e(t) = SP-PV: error in the process
variable at time t, computed via Feedback

« Control signal u(t): controller output (value of
switch, voltage, PWM, throttle, steer angle, ...)

*Set point is sometimes called the “Reference”

Bang-bang control

EETEE =10 x|
GB LLPL ABBBAEE -~

LED {OFF=0, RED=1, GREEN=2
A bang-bang temperature control [)

1 see Timer| T system for a boiler
— For a demonsiration, select Start from the Stmulation menu.
£
reference LED LED {OFF=0, RED=1, GREEN"2} BOILER CMD {OFF=0, ON=1}
temperature BOILER CMD {OFF=0, ON=1}
set point v
. / TEMP (deg ©) '
actual temp !
D Iscrete O n Off temp boiler > onfoff
digital temp TEMP (deg O)
. -
Furnace: goal — Bt =)
Caonr?t-mﬁgrg Plantmodel | N B S R R R R R R CR PP
temp =70
open

When temp < 70 400 600 8IJIJ 10h0 1200 .1.400
BANG! Heat; =
Heater l

when temp > - —
entry: turn_boiler(OFF) turn_boiler(mode)
70 BANG! Stop

after(S.sec)
the heat =

function
flash_LED()
after(40,sec)
[cold()]
[Heater.On.warm()] function
b = cold()

after(20,sec)
[On

Example source: Mathworks

Bang-bang control

Desired speec’
{ Vv, <V? * Kk motor
| 0/1

Actual speed

Encoder measurement

Bang-bang control

Desired speec’
1 V,<V?
| d

0/1

Actual speed
motor ,

Encoder measurement

O(t) = kif v(t) < V4
O(t) = 0 otherwise

Example: Home Heating System

 Plant P:

 Process Variable PV:
 Controller:
o Set Point SP:

* Control signal.

Sensor:

Thermostat

u(t)

—>{ Boiler

e(t)
.

Temperature Sensor

> PV

Example: Home Heating System

 Plant P: Boiler with on-off switch (1 = ailon; 0 = all off
* Process Variable PV: Current home temperature
* Controller: Thermostat Sensor: Thermometer
« Set Point SP: Thermostat setting (desired temp.)
» Control signal: Boiler on-off switch u(t) € {0, 1}

e(t) u(t))
SP ? > Thermostat ——{ Boiler > PV

Temperature Sensor

How could the function u(t) be implemented?

Example: Home Heating System

 Plant P: Boiler with on-off switch (1 = ailon; 0 = all off
* Process Variable PV: Current home temperature
* Controller: Thermostat Sensor: Thermometer
« Set Point SP: Thermostat setting (desired temp.)
» Control signal: Boiler on-off switch u(t) € {0, 1}

e(t) u(t))
SP ? > Thermostat ——{ Boiler > PV

Temperature Sensor

How could the function u(t) be implemented?
u(t) =1 if e(t) > 0 [i.e., if SP > PV], 0 otherwise

* A way of getting a robot to achieve and

Motor Control: closed loop

maintain a goal state by constantly comparing

current state with goal state.

 Use sensor for feedback

Desired spee

d

4

test

computation

motor

Actual speed

Encoder measurement

Motor Control: PID

« Control theory is the science that studies the
behavior of control systems

* Main types of simple linear controllers:
— P: proportional control
— PD: proportional derivative control
— PI: proportional integral control
— PID: proportional integral derivative control

Example: driving

« Steer a car in the center of a lane

Example: driving

o Steer a car in the center of it lane

Observed error: distance off from center line

Example: driving

o Steer a car in the center of it lane

Error is zero but how is the car pointed?
What will this do to the car?
P controller is happy on line independent of orientation!

What if respond ~ rate of change ?

o Steer a car in the center of it lane

Example: driving

o Steer a car in the center of it lane

What is the observed rate of error?
Other error?

What if respond ~ rate of change ?

o Steer a car in the center of it lane

D controller is Happy on any parallel line!

What if Road Sloped ?

o Steer a car in the center of its lane

What if Road Sloped ?

o Steer a car in the center of it lane

\j Faster response downhill

Gravity contributes a steady-state error

Proportional Control

« Suppose plant can be commanded by a
continuous, rather than discrete, signal

— Valve position to a pipeline or carburetor
— Throttle to an internal combustion engine

— PWM value to a DC motor

« What's a natural thing to try?

— Proportional (P) Control. make the command signal
a scalar multiple of the error term: u(t) = K, x e(t)

Controller

u(t)

—>

SP ? v,

Plant

—> PV

Sensor

Example: Cruise Control (CC) System

 Plant P:
 Process Variable PV:

Controller: Sensor:
Set Point SP:
» Control signal:

e(t) u(t))
Voo ? > C-C System ——{ Engine > Vcia

Speedometer

Example: Cruise Control (CC) System

« Plant P: Engine with throttle setting u € [0..1]

* Process Variable PV: Current speed V_ .

* Controller: C-C system Sensor: Speedometer
Set Point SP: Desired speed V e

« Control signal. Continuous throttle value u € [0..1]

e(t) u(t))
Voo ? > C-C System ——{ Engine > Vcia

Speedometer

Define e(t) = Vdesired'vactual’ U(t) = KP X e(t)’ C“pped to [01]
I.e. Throttle = KP X (Vdesired B Vactual)

Does this controller “settle” at the desired speed?
No; it exhibits error (E).

Proportional Control: Why E?
— Suppose e(t) = 0. Then u(t) = Kp * e = 0 (Plant inactivated)
— Process Variable deviates from Set Point, activating plant

— But any real physical system has a delayed response
— Deviation, sustained over delay interval, yields error

Set 1% Delay
. >
Point - \ Error (E)
Process I
Variable

PV < SP, u(t) > 0, Plant activates
PV = SP, u(t) = 0, Plant inactive

Time
>

Why not just introduce constant term, u(t) = A + K, * e(t) ?

Proportional Control Step Response
Notional plot and terminology:

f‘

Step
input 1 Error (E)
R
Set‘ / Settle Time
Point
Process
Variable >

Time

Is E constant over time? No; it depends on /oad.

Proportional Control and Error

« Can combat E by increasing K, (“the P gain”)
* This gives a faster response and lower E!

* But increasing the gain too much leads to
overshoot and instability

Set
Point

Process
Variable

1 Higher Ko
Step [N\~ ~
input N T <=
Low Kp
Time

Combating Overshoot: The D Term

* Note the derivative of error in responses below
» Subftract it from output to counteract overshoot
* Then u(t) = Ko x e(t) + Ky x d [e(t)] / dt
— Kpthe “derivative” or “damping” term in PD controller

| Step /\Highir\Kp R
Set input ,\\/ S—=—=S—
Point Damped response, K, > 0
Low Kp
Small derivative
Pro_c eSS Large derivative
Variable Time
>

... But still haven't eliminated steady-state error!

Combating Steady-State Error: | Term

 |dea: apply correction based on integrated error

— If error persists, integrated term will grow in magnitude
— Sum proportional and integral term into control output

sP —() J) 'g Plant —> PV

Then u(t) = Ko x e(t) + K, x [e(t) (where the integral of
the error term is taken over some specified time interval)
This produces a proportional-integral (Pl) controller

Incorporating the | term eliminates SSE by modulating
the plant input so that the time-averaged error is zero.

Putting it All Together: PID Control

* |Incorporate P, | and D terms in controller output
— Combine as a weighted sum, using gains as weights

(a/ad %) Kp
SP Qﬁ(t) ~>()— D4 piant - PV

Then u(t) =Ko x e(t) + K, x [e(t) + Ky x d [e(t)] / dt
This is a “proportional-integral-derivative” or PID controller

Implementation Issues

« How do we approximate K. * [err(t) dt to
implement an | controller?

* How do we approximate K, * derr/dt to
implement a D controller?

PID control

PID control combines P and D control:
0=K,*i+K*[i(t)dt + K, * di/dt
o=K,*err+K *[err(t)dt +K;* derr/dt

P component combats present error

| component combats past (cumulative) error

D component combats future error

Gains must be tuned together

Ziegler-Nichols Tuning Method

Exploration: set the plant under P control and start increasing
the Kp gain until loop oscillates
Note critical gain K and oscillation period T,

Kp K, Ko
p 0.5K
PI 0.45K_ 1.2K,/ T,
PID 0.5K 2Ko/Te |KoT/8

Z & N developed rule using Monte Carlo method
Rule useful in the absence of models

Example: Quadrotor Control
Using Ziegler-Nichols Method

Integral and Derivative
gains are set to zero

Proportional gain is
iIncreased until system
oscillates in response to
a step input

This is known as the
critical gain K, and the
system oscillates with a
period P

Calculating PID parameters

Ke = 0.6"K¢
K, = 2*Kp / T
Kg = 0.125*Ko* T,

T.=4

The Ziegler-Nichols
Method is a guideline
for experimentally
obtaining 25%
overshoot from a step
response.

What does K, do?

For this system, K is
crucial in eliminating
steady state error
primarily caused by
gravity.

The PD system
overshoots and
damping is still
reasonable.

What does K, do?

Reasonable K, helps
minimize overshoot
and settling time.

Too much K, leads to
system instability.

P system has
unacceptable
overshoot, settling
time, and steady state
error. However, it is
stable.

Control summary

Control type Feedback Pro/Con
Bang- : Simple/
bang discrete yes Discrete
Simple/may
Olpen Control law no be
oop
unrepeatable
Closed Continuous/
loop h LD yes Tune Gains

