
Motor Control

RSS Lecture 3
Monday, 7 Feb 2011

Prof. Daniela Rus
(includes some material by Prof. Seth Teller)

Jones, Flynn & Seiger § 7.8.2
http://courses.csail.mit.edu/6.141/

Today: Control
•  Early mechanical examples
•  Feed-forward and Feedback control
•  Terminology
•  Basic controllers:

–  Feed-Forward (FF) control
–  Bang-Bang control
–  Proportional (P) control
–  The D term: Proportional-Derivative (PD) control
–  The I term: Proportional-Integral (PI) control
–  Proportional-Integral-Derivative (PID) control

•  Gain selection
•  Applications

 The Role of Control

•  Many tasks in robotics are defined by
achievement goals
–  Go to the end of the maze
–  Push that box over here

•  Other tasks in robotics are defined by
maintenance goals:
–  Drive at 0.5m/s
–  Balance on one leg

 The Role of Control

•  Control theory is generally used for low-level
maintenance goals

•  General notions:
–  output = Controller(input)
–  output is control signal to actuator (e.g., motor

voltage/current)
–  input is either goal state or goal state error (e.g.,

desired motor velocity)
•  Controller is stateless

•  Consider any mechanism with adjustable DOFs*
(e.g. a valve, furnace, engine, car, robot…)

•  Control is purposeful variation of these DOFs
to achieve some specified maintenance state
–  Early mechanical examples: float valve, steam governor

What is the point of control?

www.freshwatersystems.com

*DOFs = Degrees of Freedom

Motor Control: Open Loop

•  Give robot task with no concern for the
environment

•  Applications: ???
•  Open loop: signal to action
•  Not checked if correct action was taken
•  Example: go forward for 15 secs, then turn

left for 10 secs. Issues?

signal actuator output

Open loop (feed-forward) control
•  Open loop controller:

–  output = FF(goal)

•  Example.: motor speed controller (linear):
–  V = k * s
–  V is applied voltage on motor
–  s is speed
–  k is gain term (from calibration)

•  Weakness:
–  Varying load on motor => motor may not maintain goal

speed

 Feed-Forward (FF) Control
•  Pass command signal from external environment

directly to the loaded element (e.g., the motor)
•  Command signal typically multiplied by a gain K

•  … Where does the gain value K come from?

•  Under what conditions will FF control work well?

•  You will implement an FF controller in Lab 2

Motor Command
signal

× RPM

K

 Feed-Forward (FF) Control
•  Pass command signal from external environment

directly to the loaded element (e.g., the motor)
•  Command signal typically multiplied by a gain K

•  … Where does the gain value K come from?
–  Calibration (example: PWM = 0, PWM = 255)

•  Under what conditions will FF control work well?
–  When the presented load is uniform and known

•  You will implement an FF controller in Lab 2

Motor Command
signal

× RPM

K

Feedback Control

•  Feedback controller:
–  output = FB(error)
–  error = goal state - measured state
–  controller attempts to minimize error

•  Feedback control requires sensors:
–  Binary (at goal/not at goal)
–  Direction (less than/greater than)
–  Magnitude (very bad, bad, good)

•  How would you use feedback control to
implement a wall-following behavior in a robot?

•  What sensors would you use, and would they
provide magnitude and direction of the error?

•  What will this robot's behavior look like?

Example: Wall Following

Feedback Control Terminology
•  Plant P: process commanded by a Controller
•  Process Variable PV: Value of some process

or system quantity of interest (e.g. temperature,
speed, force, …) as measured by a Sensor

•  Set Point* SP: Desired value of that quantity

•  Error signal e(t) = SP-PV: error in the process
variable at time t, computed via Feedback

•  Control signal u(t): controller output (value of
switch, voltage, PWM, throttle, steer angle, …)

Controller Plant

Sensor

SP - PV
e(t) u(t)

Feedback

*Set point is sometimes called the “Reference”

Bang-bang control

Example source: Mathworks

•  Discrete on/off
•  Furnace: goal

temp = 70
•  when temp < 70

BANG! Heat;
•  when temp >

70 BANG! Stop
the heat

Bang-bang control

Desired speed Actual speed
Vd < V?

0/1
* k motor

Encoder measurement

O(t) =
O(t) =

Bang-bang control

Desired speed Actual speed
Vd < V?

0/1
* k motor

Encoder measurement

O(t) = k if v(t) < Vd
O(t) = 0 otherwise

Example: Home Heating System
•  Plant P:
•  Process Variable PV:
•  Controller: Sensor:
•  Set Point SP:
•  Control signal:

Thermostat Boiler

Temperature Sensor

SP - PV
e(t) u(t)

Example: Home Heating System
•  Plant P: Boiler with on-off switch (1 = all on ; 0 = all off)
•  Process Variable PV: Current home temperature
•  Controller: Thermostat Sensor: Thermometer
•  Set Point SP: Thermostat setting (desired temp.)
•  Control signal: Boiler on-off switch u(t) ∈ {0, 1}

Thermostat Boiler

Temperature Sensor

SP - PV
e(t) u(t)

How could the function u(t) be implemented?

Example: Home Heating System
•  Plant P: Boiler with on-off switch (1 = all on ; 0 = all off)
•  Process Variable PV: Current home temperature
•  Controller: Thermostat Sensor: Thermometer
•  Set Point SP: Thermostat setting (desired temp.)
•  Control signal: Boiler on-off switch u(t) ∈ {0, 1}

Thermostat Boiler

Temperature Sensor

SP - PV
e(t) u(t)

How could the function u(t) be implemented?
 u(t) = 1 if e(t) > 0 [i.e., if SP > PV], 0 otherwise

Motor Control: closed loop

•  A way of getting a robot to achieve and
maintain a goal state by constantly comparing
current state with goal state.

•  Use sensor for feedback

Desired speed Actual speed
computation test motor

Encoder measurement

•  Control theory is the science that studies the
behavior of control systems

•  CurrentState - DesiredState = Error
•  Main types of simple linear controllers:

–  P: proportional control
–  PD: proportional derivative control
–  PI: proportional integral control
–  PID: proportional integral derivative control

Motor Control: PID

Example: driving

•  Steer a car in the center of a lane

Example: driving

•  Steer a car in the center of it lane

Observed error: distance off from center line

Example: driving

•  Steer a car in the center of it lane

Error is zero but how is the car pointed?
What will this do to the car?
P controller is happy on line independent of orientation!

What if respond ~ rate of change ?
•  Steer a car in the center of it lane

Example: driving

•  Steer a car in the center of it lane

What is the observed rate of error?
Other error?

What if respond ~ rate of change ?
•  Steer a car in the center of it lane

D controller is Happy on any parallel line!

What if Road Sloped ?
•  Steer a car in the center of its lane

What if Road Sloped ?
•  Steer a car in the center of it lane

Gravity contributes a steady-state error

Faster response downhill

Slower response uphill

Proportional Control
•  Suppose plant can be commanded by a

continuous, rather than discrete, signal
–  Valve position to a pipeline or carburetor
–  Throttle to an internal combustion engine
–  PWM value to a DC motor

•  What’s a natural thing to try?
–  Proportional (P) Control: make the command signal

a scalar multiple of the error term: u(t) = KP × e(t)

Controller Plant

Sensor

SP - PV
e(t) u(t)

Example: Cruise Control (CC) System
•  Plant P:
•  Process Variable PV:
•  Controller: Sensor:
•  Set Point SP:
•  Control signal:

C-C System Engine

Speedometer

Vdesired - Vactual
e(t) u(t)

Example: Cruise Control (CC) System
•  Plant P: Engine with throttle setting u ∈ [0..1]
•  Process Variable PV: Current speed Vactual
•  Controller: C-C system Sensor: Speedometer
•  Set Point SP: Desired speed Vdesired
•  Control signal: Continuous throttle value u ∈ [0..1]

C-C System Engine

Speedometer

Vdesired - Vactual
e(t) u(t)

Define e(t) = Vdesired-Vactual, u(t) = KP × e(t), clipped to [0..1]
 i.e. Throttle = KP × (Vdesired - Vactual)
Does this controller “settle” at the desired speed?

 No; it exhibits error (E).

Proportional Control: Why E?

Process
Variable

Error (E)

Set
Point

Time

–  Suppose e(t) = 0. Then u(t) = KP * e = 0 (Plant inactivated)
–  Process Variable deviates from Set Point, activating plant
–  But any real physical system has a delayed response
–  Deviation, sustained over delay interval, yields error

PV = SP, u(t) = 0, Plant inactive

PV < SP, u(t) > 0, Plant activates

Why not just introduce constant term, u(t) = A + KP * e(t) ?

Delay

Proportional Control Step Response

Process
Variable

Error (E)
Step
input

Set
Point

Time

Settle Time

Is E constant over time? No; it depends on load.

Notional plot and terminology:

Proportional Control and Error
•  Can combat E by increasing KP (“the P gain”)
•  This gives a faster response and lower E!
•  But increasing the gain too much leads to

overshoot and instability

Process
Variable

Low KP

Higher KP
Step
input Set

Point

Time

Combating Overshoot: The D Term
•  Note the derivative of error in responses below
•  Subtract it from output to counteract overshoot
•  Then u(t) = KP × e(t) + KD × d [e(t)] / dt

–  KD the “derivative” or “damping” term in PD controller

Process
Variable

Low KP

Higher KP Step
input Set

Point

Time
Large derivative

Small derivative

Damped response, KD > 0

•  … But still haven’t eliminated steady-state error!

Combating Steady-State Error: I Term
•  Idea: apply correction based on integrated error

–  If error persists, integrated term will grow in magnitude
–  Sum proportional and integral term into control output

Plant -
e(t) u(t)

×

∫ ×

Σ	

KP
KI

SP PV

Then u(t) = KP × e(t) + KI × ∫ e(t) (where the integral of
the error term is taken over some specified time interval)
This produces a proportional-integral (PI) controller

Incorporating the I term eliminates SSE by modulating
the plant input so that the time-averaged error is zero.

Putting it All Together: PID Control
•  Incorporate P, I and D terms in controller output

–  Combine as a weighted sum, using gains as weights

Plant - e(t) u(t) ×

∫ ×

Σ	

KP
KI

SP PV

Then u(t) = KP × e(t) + KI × ∫ e(t) + KD × d [e(t)] / dt
This is a “proportional-integral-derivative” or PID controller

d/dt × KD

Implementation Issues

•  How do we approximate Ki * ∫ err(t) dt to
implement an I controller?

•  How do we approximate Kd * derr/dt to
implement a D controller?

 PID control

•  PID control combines P and D control:
 o = Kp * i + Ki * ∫ i(t) dt + Kd * di/dt
 o = Kp * err + Ki * ∫ err(t) dt + Kd * derr/dt

•  P component combats present error
•  I component combats past (cumulative) error
•  D component combats future error
•  Gains must be tuned together

Ziegler-Nichols Tuning Method

KP KI KD

P 0.5KC

PI 0.45KC 1.2KP/TC

PID 0.5KC 2KP/TC KPTC/8

Exploration: set the plant under P control and start increasing
 the Kp gain until loop oscillates
 Note critical gain KC and oscillation period TC

Z & N developed rule using Monte Carlo method
Rule useful in the absence of models

Example: Quadrotor Control
Using Ziegler-Nichols Method

  Integral and Derivative
gains are set to zero

  Proportional gain is
increased until system
oscillates in response to
a step input

  This is known as the
critical gain KC, and the
system oscillates with a
period PC

Calculating PID parameters

  KP = 0.6*KC

  KI = 2*KP / TC

  KD = 0.125*KP*TC

  TC = 4

  The Ziegler-Nichols
Method is a guideline
for experimentally
obtaining 25%
overshoot from a step
response.

What does KI do?

  For this system, KI is
crucial in eliminating
steady state error
primarily caused by
gravity.

  The PD system
overshoots and
damping is still
reasonable.

What does KD do?

  Reasonable KD helps
minimize overshoot
and settling time.

  Too much KD leads to
system instability.

  P system has
unacceptable
overshoot, settling
time, and steady state
error. However, it is
stable.

 Control summary
Control type Feedback Pro/Con

Bang-
bang discrete yes Simple/

Discrete

Open
loop Control law no

Simple/may
be

unrepeatable

Closed
loop P, I, D yes Continuous/

Tune Gains

