
Motor Control

RSS Lecture 3
Monday, 7 Feb 2011

Prof. Daniela Rus
(includes some material by Prof. Seth Teller)

Jones, Flynn & Seiger § 7.8.2
http://courses.csail.mit.edu/6.141/

Today: Control
•  Early mechanical examples
•  Feed-forward and Feedback control
•  Terminology
•  Basic controllers:

–  Feed-Forward (FF) control
–  Bang-Bang control
–  Proportional (P) control
–  The D term: Proportional-Derivative (PD) control
–  The I term: Proportional-Integral (PI) control
–  Proportional-Integral-Derivative (PID) control

•  Gain selection
•  Applications

 The Role of Control

•  Many tasks in robotics are defined by
achievement goals
–  Go to the end of the maze
–  Push that box over here

•  Other tasks in robotics are defined by
maintenance goals:
–  Drive at 0.5m/s
–  Balance on one leg

 The Role of Control

•  Control theory is generally used for low-level
maintenance goals

•  General notions:
–  output = Controller(input)
–  output is control signal to actuator (e.g., motor

voltage/current)
–  input is either goal state or goal state error (e.g.,

desired motor velocity)
•  Controller is stateless

•  Consider any mechanism with adjustable DOFs*
(e.g. a valve, furnace, engine, car, robot…)

•  Control is purposeful variation of these DOFs
to achieve some specified maintenance state
–  Early mechanical examples: float valve, steam governor

What is the point of control?

www.freshwatersystems.com

*DOFs = Degrees of Freedom

Motor Control: Open Loop

•  Give robot task with no concern for the
environment

•  Applications: ???
•  Open loop: signal to action
•  Not checked if correct action was taken
•  Example: go forward for 15 secs, then turn

left for 10 secs. Issues?

signal actuator output

Open loop (feed-forward) control
•  Open loop controller:

–  output = FF(goal)

•  Example.: motor speed controller (linear):
–  V = k * s
–  V is applied voltage on motor
–  s is speed
–  k is gain term (from calibration)

•  Weakness:
–  Varying load on motor => motor may not maintain goal

speed

 Feed-Forward (FF) Control
•  Pass command signal from external environment

directly to the loaded element (e.g., the motor)
•  Command signal typically multiplied by a gain K

•  … Where does the gain value K come from?

•  Under what conditions will FF control work well?

•  You will implement an FF controller in Lab 2

Motor Command
signal

× RPM

K

 Feed-Forward (FF) Control
•  Pass command signal from external environment

directly to the loaded element (e.g., the motor)
•  Command signal typically multiplied by a gain K

•  … Where does the gain value K come from?
–  Calibration (example: PWM = 0, PWM = 255)

•  Under what conditions will FF control work well?
–  When the presented load is uniform and known

•  You will implement an FF controller in Lab 2

Motor Command
signal

× RPM

K

Feedback Control

•  Feedback controller:
–  output = FB(error)
–  error = goal state - measured state
–  controller attempts to minimize error

•  Feedback control requires sensors:
–  Binary (at goal/not at goal)
–  Direction (less than/greater than)
–  Magnitude (very bad, bad, good)

•  How would you use feedback control to
implement a wall-following behavior in a robot?

•  What sensors would you use, and would they
provide magnitude and direction of the error?

•  What will this robot's behavior look like?

Example: Wall Following

Feedback Control Terminology
•  Plant P: process commanded by a Controller
•  Process Variable PV: Value of some process

or system quantity of interest (e.g. temperature,
speed, force, …) as measured by a Sensor

•  Set Point* SP: Desired value of that quantity

•  Error signal e(t) = SP-PV: error in the process
variable at time t, computed via Feedback

•  Control signal u(t): controller output (value of
switch, voltage, PWM, throttle, steer angle, …)

Controller Plant

Sensor

SP - PV
e(t) u(t)

Feedback

*Set point is sometimes called the “Reference”

Bang-bang control

Example source: Mathworks

•  Discrete on/off
•  Furnace: goal

temp = 70
•  when temp < 70

BANG! Heat;
•  when temp >

70 BANG! Stop
the heat

Bang-bang control

Desired speed Actual speed
Vd < V?

0/1
* k motor

Encoder measurement

O(t) =
O(t) =

Bang-bang control

Desired speed Actual speed
Vd < V?

0/1
* k motor

Encoder measurement

O(t) = k if v(t) < Vd
O(t) = 0 otherwise

Example: Home Heating System
•  Plant P:
•  Process Variable PV:
•  Controller: Sensor:
•  Set Point SP:
•  Control signal:

Thermostat Boiler

Temperature Sensor

SP - PV
e(t) u(t)

Example: Home Heating System
•  Plant P: Boiler with on-off switch (1 = all on ; 0 = all off)
•  Process Variable PV: Current home temperature
•  Controller: Thermostat Sensor: Thermometer
•  Set Point SP: Thermostat setting (desired temp.)
•  Control signal: Boiler on-off switch u(t) ∈ {0, 1}

Thermostat Boiler

Temperature Sensor

SP - PV
e(t) u(t)

How could the function u(t) be implemented?

Example: Home Heating System
•  Plant P: Boiler with on-off switch (1 = all on ; 0 = all off)
•  Process Variable PV: Current home temperature
•  Controller: Thermostat Sensor: Thermometer
•  Set Point SP: Thermostat setting (desired temp.)
•  Control signal: Boiler on-off switch u(t) ∈ {0, 1}

Thermostat Boiler

Temperature Sensor

SP - PV
e(t) u(t)

How could the function u(t) be implemented?
 u(t) = 1 if e(t) > 0 [i.e., if SP > PV], 0 otherwise

Motor Control: closed loop

•  A way of getting a robot to achieve and
maintain a goal state by constantly comparing
current state with goal state.

•  Use sensor for feedback

Desired speed Actual speed
computation test motor

Encoder measurement

•  Control theory is the science that studies the
behavior of control systems

•  CurrentState - DesiredState = Error
•  Main types of simple linear controllers:

–  P: proportional control
–  PD: proportional derivative control
–  PI: proportional integral control
–  PID: proportional integral derivative control

Motor Control: PID

Example: driving

•  Steer a car in the center of a lane

Example: driving

•  Steer a car in the center of it lane

Observed error: distance off from center line

Example: driving

•  Steer a car in the center of it lane

Error is zero but how is the car pointed?
What will this do to the car?
P controller is happy on line independent of orientation!

What if respond ~ rate of change ?
•  Steer a car in the center of it lane

Example: driving

•  Steer a car in the center of it lane

What is the observed rate of error?
Other error?

What if respond ~ rate of change ?
•  Steer a car in the center of it lane

D controller is Happy on any parallel line!

What if Road Sloped ?
•  Steer a car in the center of its lane

What if Road Sloped ?
•  Steer a car in the center of it lane

Gravity contributes a steady-state error

Faster response downhill

Slower response uphill

Proportional Control
•  Suppose plant can be commanded by a

continuous, rather than discrete, signal
–  Valve position to a pipeline or carburetor
–  Throttle to an internal combustion engine
–  PWM value to a DC motor

•  What’s a natural thing to try?
–  Proportional (P) Control: make the command signal

a scalar multiple of the error term: u(t) = KP × e(t)

Controller Plant

Sensor

SP - PV
e(t) u(t)

Example: Cruise Control (CC) System
•  Plant P:
•  Process Variable PV:
•  Controller: Sensor:
•  Set Point SP:
•  Control signal:

C-C System Engine

Speedometer

Vdesired - Vactual
e(t) u(t)

Example: Cruise Control (CC) System
•  Plant P: Engine with throttle setting u ∈ [0..1]
•  Process Variable PV: Current speed Vactual
•  Controller: C-C system Sensor: Speedometer
•  Set Point SP: Desired speed Vdesired
•  Control signal: Continuous throttle value u ∈ [0..1]

C-C System Engine

Speedometer

Vdesired - Vactual
e(t) u(t)

Define e(t) = Vdesired-Vactual, u(t) = KP × e(t), clipped to [0..1]
 i.e. Throttle = KP × (Vdesired - Vactual)
Does this controller “settle” at the desired speed?

 No; it exhibits error (E).

Proportional Control: Why E?

Process
Variable

Error (E)

Set
Point

Time

–  Suppose e(t) = 0. Then u(t) = KP * e = 0 (Plant inactivated)
–  Process Variable deviates from Set Point, activating plant
–  But any real physical system has a delayed response
–  Deviation, sustained over delay interval, yields error

PV = SP, u(t) = 0, Plant inactive

PV < SP, u(t) > 0, Plant activates

Why not just introduce constant term, u(t) = A + KP * e(t) ?

Delay

Proportional Control Step Response

Process
Variable

Error (E)
Step
input

Set
Point

Time

Settle Time

Is E constant over time? No; it depends on load.

Notional plot and terminology:

Proportional Control and Error
•  Can combat E by increasing KP (“the P gain”)
•  This gives a faster response and lower E!
•  But increasing the gain too much leads to

overshoot and instability

Process
Variable

Low KP

Higher KP
Step
input Set

Point

Time

Combating Overshoot: The D Term
•  Note the derivative of error in responses below
•  Subtract it from output to counteract overshoot
•  Then u(t) = KP × e(t) + KD × d [e(t)] / dt

–  KD the “derivative” or “damping” term in PD controller

Process
Variable

Low KP

Higher KP Step
input Set

Point

Time
Large derivative

Small derivative

Damped response, KD > 0

•  … But still haven’t eliminated steady-state error!

Combating Steady-State Error: I Term
•  Idea: apply correction based on integrated error

–  If error persists, integrated term will grow in magnitude
–  Sum proportional and integral term into control output

Plant -
e(t) u(t)

×

∫ ×

Σ	

KP
KI

SP PV

Then u(t) = KP × e(t) + KI × ∫ e(t) (where the integral of
the error term is taken over some specified time interval)
This produces a proportional-integral (PI) controller

Incorporating the I term eliminates SSE by modulating
the plant input so that the time-averaged error is zero.

Putting it All Together: PID Control
•  Incorporate P, I and D terms in controller output

–  Combine as a weighted sum, using gains as weights

Plant - e(t) u(t) ×

∫ ×

Σ	

KP
KI

SP PV

Then u(t) = KP × e(t) + KI × ∫ e(t) + KD × d [e(t)] / dt
This is a “proportional-integral-derivative” or PID controller

d/dt × KD

Implementation Issues

•  How do we approximate Ki * ∫ err(t) dt to
implement an I controller?

•  How do we approximate Kd * derr/dt to
implement a D controller?

 PID control

•  PID control combines P and D control:
 o = Kp * i + Ki * ∫ i(t) dt + Kd * di/dt
 o = Kp * err + Ki * ∫ err(t) dt + Kd * derr/dt

•  P component combats present error
•  I component combats past (cumulative) error
•  D component combats future error
•  Gains must be tuned together

Ziegler-Nichols Tuning Method

KP KI KD

P 0.5KC

PI 0.45KC 1.2KP/TC

PID 0.5KC 2KP/TC KPTC/8

Exploration: set the plant under P control and start increasing
 the Kp gain until loop oscillates
 Note critical gain KC and oscillation period TC

Z & N developed rule using Monte Carlo method
Rule useful in the absence of models

Example: Quadrotor Control
Using Ziegler-Nichols Method

  Integral and Derivative
gains are set to zero

  Proportional gain is
increased until system
oscillates in response to
a step input

  This is known as the
critical gain KC, and the
system oscillates with a
period PC

Calculating PID parameters

  KP = 0.6*KC

  KI = 2*KP / TC

  KD = 0.125*KP*TC

  TC = 4

  The Ziegler-Nichols
Method is a guideline
for experimentally
obtaining 25%
overshoot from a step
response.

What does KI do?

  For this system, KI is
crucial in eliminating
steady state error
primarily caused by
gravity.

  The PD system
overshoots and
damping is still
reasonable.

What does KD do?

  Reasonable KD helps
minimize overshoot
and settling time.

  Too much KD leads to
system instability.

  P system has
unacceptable
overshoot, settling
time, and steady state
error. However, it is
stable.

 Control summary
Control type Feedback Pro/Con

Bang-
bang discrete yes Simple/

Discrete

Open
loop Control law no

Simple/may
be

unrepeatable

Closed
loop P, I, D yes Continuous/

Tune Gains

