Massachusetts Institute of Technology

Robotics: Science and Systems |

Lab 5: Local Navigation and Error Analysis
Distributed: Wednesday, 3/2/2010, 3pm
Checkpoint 1:, Monday, 3/7/2010, 3pm

Checkpoint 2: Wednesday, 3/9/2010, 3pm
Wiki Materials and Briefings Due: Monday 3/14/2010, 3pm

Objectives and Lab Overview

In Lab 4 you explored using camera data in order to sense ysinomment and react appropriately to it. In lecture,
we have started to learn about navigation by considerirailcation and navigation-oriented sensing. Your objeitiv
this lab is to preliminarily integrate these different chitiies. This lab will give you the technical skills to inquorate
bump and sonar sensors. You will learn to process sensorumegasnts with simple filters. You will learn how to
make your robot follow a wall. Finally, you will learn how t@guire a model of the environment and use it to allow
your robot to tour an obstacle.

Your objectives in this lab are to:

Integrate bump and sonar sensing into your robot.

Program the robot to detect and react to collisions.

Program the robot to reliably detect an obstacle wall aneedaiong it.

Program the robot to acquire a geometric model for a convetagke from the sensor data.

We advise you to read the lab hand-out quickly at the staftefdb and determine what work can be done by splitting
up responsibilities among group members.

Time Accounting and Self-Assessment:

Make a dated entry called “Start of Local Navigation Lab” auy Wiki's Self-Assessment page. Before doing any
of the lab parts below, assign a number to describe your jafig: 1=Not at all proficient; 2=slightly proficient;
3=reasonably proficient; 4=very proficient; 5=expert

e Electronics: How proficient are you at working with sonar and bump sersors

e Data Analysis How proficient are you at working with measurement data anat @nalysis?

e Motion Control : How proficient are you at crafting robot motion algorithnsing sensor feedback?
To start the lab, you should have:

e Your robot from the previous lab.

e Sonar sensor hardware: 2 sonar sensors on mounts plus frelbo#s” to attach them to your robot.

e 2 bump switches (1 clockwise and 1 counter-clockwise) anddkers, plus wiring, header, heat shrink, con-
nection plates and screws,

Physical Units

We remind you to use MKS units (meters, kilograms, secorabans, watts, etc.) throughout the course and this lab.
In particular, this means thathenever you state a physical quantity, you must state its. kiso show units in your
intermediate calculations.



1 Software and Development Environment Preliminaries

Follow the usual procedure to populate your working area wie provided lab code. On the Sun workstation, one
person should first update the source directtRsS-I-pub/ by running the following commands:

cd "/RSS-I-pub
svn update

Now, as in previous labs, export the néwcalNavigation directory into your group’s working copy and add it
(and all subdirectories) to the list of files under versiontcol:

cd “/RSS-I-group/trunk/

svn export “/RSS-I-pub/labs/LocalNavigation/

svn add LocalNavigation

svn commit LocalNavigation -m "added new source for LocalNa vigation lab"

We will again be using Carmen, but the camera is not usedsridhiso it is not necessary to run the Carmen camera
daemon (all the other Carmen daemons which you ran in the latioare still necessary). As before, the Carmen

daemons must be run on the laptop mounted to your robot, hurtjava code can run either on the laptop or on your
Sun workstation. In the latter case you will again need toemalkre that the environment variald&NTRALHOST

is set to the IP address of your laptop, and when you run ymargade you must make sure that you have either
hard-coded the same hostname into it or that you pass thedmstas a command-line parameter. You may find it

more convenient to run your code on the workstation as yoeldpwvand debug it, but you should also ensure that it

runs correctly on the laptop for autonomous operation.

2 Incorporate the Bump and Sonar Sensor Hardware

Recall from the lecture on sensors that a bump sensor is @ldigi/'off sensor, and a sonar is an analog sensor.

1. Create wiring harnesses for each of your bump sensorssértsors have three connections: COM, NO (normally
open) and NC (normally closed). When the bump switch is ntitedied, the COM connection is shorted to the
NC connection. When the switch is activated as a result afdhet hitting a wall, the COM connection is shorted
to the NO terminal and the COM to NC connection is broken.

Design your wiring harnesses such that the COM terminalsanaected to ground and the NO terminals are
connected to the signal line of the digital inputs on ti@rcboard. We use pull-up resistors on f@rcboard
such that when the bump switch is not activated tecboard reads a high logic level from the digital I/O pin.
When the the robot hits a wall, thedrcboard will read a low logic level.

2. Mount your bump sensors onto the front of your robot. Yoousth have two types of bump sensor: one rotates
clockwise and the other rotates counter-clockwise. Youwkhplace the clockwise sensor on the right side of the
front of your robot so that the whisker points toward the me®f the robot.

Once you have mounted the sensors and installed the whiskensect the bump sensors to the slow digital I/O
ports of uOrcboard: the left bump sensor to port 0 and right to port 1e TWM header holes should connect
to the GND pin. Route your wires neatly, and bend the bumpasembkiskers to minimize contact distance (i.e.
distance from the robot to the obstacle when the bump sentgates) and avoid hitting any mounting screws.

3. Create a wiring harness for your sonars. Both sonars coriwate with theuOrcboard using the sharddC
communication bus. This is a two-wire, bidirectional busanéhthepOrcboard is the master and the sonars are
the slave devices. In addition to the data (SDA) and clock (Si@es used for communication, the sonars also
require +5V and a ground connection.

The pOrcboard has twd2C' ports, one that uses 3.3V and another that uses 5V. Becagisotiars run on
5V, you'll need to use the 5V 12C port. Both ports are sidesige just above channel 0 of the fast digital I/O



bank. Starting from thd2C pin closest to the fast I/O bank, tH8C connections on the four pin header are
Ground, SCL, +5V, SDA, the SDA connection being closest todénter of the.Orcboard. On the sonars, the
connector pin order, starting from the pin closes to the eoamd running inward is 5V, SDA, SCL, Mode (which
you should leave unconnected) and Ground. For more inféematonsult the SRF02 technical specification:
http://www.robot-electronics.co.uk/htm/srf02techl2C .htm

4. Before mounting the sonar sensors, test them with the tgbon blocks. You should have two sonar sensors with
different IDs. Confirm the IDs by checking a number of red fessbn the back of the sonars when you turn on
the yOrcboard. The front sonar should have one long flash, ancetireone should have one long flash followed
by two short flashes. If you have questions, look at the exanmpbot.

Use theSonarTest java code in thé.ocalNavigation directory while running the carmen daemons. It will
indicate which of the bump sensors are activated and theerarggsurements from each sorfdonarTest is

a terminal-based program, so to run it we suggest doing tl@viag from a terminal (after starting carmen, of
course):

cd "/RSS-I-group/trunk/LocalNavigation/
ant run-test

5. Mount the sonar on the left side of your robot using the Bagpnounting plates, standoffs, and L-brackets.

Deliverables: Your report on the Wiki, named “LocalNavigat Lab Report Group N”,Please include a picture of
sensors and robot and let us know what was difficult, if amgthi

3 Characterize your Sensors

3.1 Familiarize yourself with the Carmen Documentation

Point your web browser thttp://courses.csail.mit.edu/6.141/spring2011/publ/c armen/docs/

and explore Carmen’s classes and interfaces, especialRathot class SonarHandler interface BumperHandler
interface, andDdometryHandler interface. The Carmen javadoc is rather sparse so we hav@igided some
sample code. Look over the figonarTest.java , this code can be used to test your sonars and bump sensors and
illustrates using the Carmen message API.

3.2 Getting More Sensor Data from Carmen

In the previous lab, you saw how to get camera data from thetrop implementing th&CameraHandler in-
terface and potentially odometry by ti@dometryHandler interface. Now you’ll implement some new inter-
faces to process data from your bumper and sonar sensoigg€8ion: You could starting your coding by cloning
VisualServo.java to LocalNavigation.java )

e Create a package for this lab’s code, and in it, write a new dass called.ocalNavigation that im-
plements thdBumperHandler andSonarHandler interfaces. Your event handlers should (initially) do
nothing more than print out the sensor state. Rememberaot@®SonarTest.java

e Implement a constructor which subscribes to the relevarssages, and main() method which initializes
the CarmerRobot object and starts the Carmen event loop (see the constraretibnain() methods in the
VisualServo class from the previous lab for examples of each).

When everything seems to be working, drive your robot aramagiually using the&sonarGUI program we have
provided, which extendgisionGUI  from the last lab with some new capabilities. Verify that femsor readings
are reasonable.



3.3 Collision Detection Using Bumpers

As you progress through the lab you will implement a Finitat&tMachine (FSM) which will ultimately be able to
explore a polygonal obstacle. You will begin the developheéithis FSM in the next few sections by writing some of
its sub-routines.

e Create an integer instance field in ydwcalNavigation class namedtate , and create an integer class
constant calleéTOP_ON_BUMP

e Modify your bumper handler to stop the robot whettate == STOP_ON_BUMP and any bumper is de-
pressed. If you have connected your bumpers exactly as oaxémaplar, the left bumper value should be
reported at index 0 (Orcboard port 0) and the right bumpeulshime reported at index 1 (Orcboard port 1). We
have also provideBumperData.java  which provides an abstraction for detecting bumps. Feel tioeuse
this code.

Change your code so that the initial valuestate is STOP_ON_BUMRNd run it to verify the behavior is as
desired (drive the robot around manually wbnarGUI ; it should automatically stop now when either bump sensor
encounters an obstacle).

3.4 Robot Alignment Using Bumpers

Now you will write an FSM sub-routine which aligns the frorittbe robot to be roughly parallel to a planar obstacle
facing the robot.

e Create new integer class constaAtdGN_ON_BUMPALIGNING, andALIGNED, each with a value unique
relative to all other state constants.

e Modify your bumper handler so that

— if state is ALIGN_ON_BUMRN either of the bumpers is depresstdie changes t&ALIGNING
— if state is ALIGNING (including if it was just changed)

x if no bumper is depressed, the robot moves forward slowly

x if only one bumper is depressed, the robot rotates slowlgérappropriate direction to try to activate
the other bumper

x if both bumpers are depressed, the robot stopstatd changes tAALIGNED

Hint: Do not take too long to handle any individual message from Canen. As long as your code is running
to handle a message, it is preventing any other messageehsufiticluding the one you're in) from getting called
(again). For example, if you want to move the robot, justtseiélocity; do not wait for the motion to complete before
returning from the event handler. Later, when you implent@ddmetryHandler , you will command and control
movement in a more refined way.

Change your code so that the initial valuestte is ALIGN_ON_BUMPand run it to verify the behavior is as
desired, using one of the provided obstacle surfacesdiaithe align behavior by manually driving one bump sensor
into an obstacle usin§onarGUI , or just start the robot with the sensor already activated).

Test the behavior for at least three different starting tomss of the robot with respect to the obstacle. In each case,
use the ruler and protractor provided in your lab kit to measiue angle of the robot face relative to the obstacle after
the robot enters thALIGNED state. Compute the minimum, maximum, and average error anglesrathdde these
values in your Wiki.



3.5 Checkpoint 1 — Monday March 7, 2010 3pm
e Sonars and bump sensors mounted on robot.
e Demonstrate functioning sensors ustgnarTest

e Demonstrat&ALIGN_ON_BUMP

3.6 Sonar Calibration and Data Segmentation

In this part of the lab you will develop code which uses theediting sonars to detect the presence of an obstacle
wall and to incrementally estimate its start, end, and plega{ion and orientation) in the world.

First, establish a global coordinate frame for your robat. &ample, you may choose to use the coordinate systems
marked on the floor from prior labs, or you can simply definewioeld frame to be identical to the robot frame at the
start of each run. In either case, your robot should be attiggnaand aligned to the axis (i.e.6 = 0) at the start of
each run (in the latter arrangement, these hold by definitlearly describe your coordinate system in your Wiki.

e Make yourLocalNavigation class implemen®dometryHandler , and ensure that when you start your
code your robot correctly reports that it is(at y, 8) = (0,0, 0), even if it has driven around in a prior run. Note
that if you do not want to restart the Carmen daemons and ttiedard between runs you may need to write code
to reset the odometry in softwarRgbot.resetRobotBase() andRobot.setVelocity(0.0, 0.0) )
at the start of each run.

e Choose a rectangular obstacle with one face roughly 1m lang place it about 0.5m ahead and 0.5m to the
left (measured from robot frame origin) of the robot, witle $elected face parallel to and facing the left side of
the robot.

We have provided new Carmen messages which c8osarGUI to graphically display robot poses, sonar points,
lines, and line segments. Create and publish new instarithese messages in youocalNavigation code to
display all graphical data. When you are asked to includi data in your Wiki, just take a screenshoSufnarGUI
window showing the desired data.

You should not need to modifgonarGUI for any of the tasks we ask you to perform. Before you starirapdead
carefully through the documentation at the top of that class and indhespondingsUl* Message classes so you
understand what they do and how to use them.

e Add code to your sonar handler to plot the locations of eactasping, in the world frame. If you have
connected your sonars exactly as on the exemplar, Carmeidsfeport the front sonar range at index 0 and the
rear sonar at index 1. You may assume that the repoatagk for each ping gives the perpendicular distance
from the mounting location of the corresponding sonar orlefeside of the robot to the detected object. Plot
the front and rear sonar data witlfferent symbols. Note that you will have to combine the range values
with the most recent robot odometry data to produce the é¢oates of sonar hit-points in world fram&ake a
screenshots of the GUI showing both front and rear sonar gargd post it on your wiki.

UsingSonarGUI , drive your robot slowly past the obstacle several timestisig about 0.5m before the obstacle, and
ending about 0.5m after the obstacle each time. Estimateshbld whictrsegmentthe data into obstacle points and
non-obstacle points (you may want to temporarily add ptiatesnents to display the numeric values of each ping).
Take screen shoots showing of the different runs and postrtiiee wiki.

e Pick two colors, one to represent non-obstacle points, aedo represent obstacle points. In your code, use
the threshold to set the colors of the plotted points appaitgdy. Be aware that some sonars will display zero
for infinite distance.



How reliably does your threshold work? Does your code evedpce a false-positivé.e., classify a sonar point as
an obstacle reflection when the sonar was unarguably nadlfcpointed at the obstacle)® false negativéa sonar
point classified as a non-obstacle point when the sonar vitaalBcpointed at the obstacl®)Take a screenshot of
your GUI after a test run and post it on the Wiki.

In either case, you may wish to implement a simple low-pates filn the sonar data (actually two separate filters, one
for the front sonar and one for the rear) as it is received eikample, you could implement a sliding-window moving
average filter, or an Infinite Impulse Response (IIR) fiiigesearch those terms if you are not already familiar with
them). Ask a TA for help if you think you need a filter but ardl sthsure how to implement it.

3.7 Modeling the Obstacle

Now you will formulate a model of the obstacle wall as a lineq&ater, as a lineegmerjtin world frame. The overall
idea is that your robot will decide when an obstacle wall hegun, incrementally estimate the parameters of a line
which fits the obstacle data points as they are acquired feamddecide when the obstacle has ended.

You'll develop this code in two stages. First, you will fooots the model acquisition and visualization. Then, in the
next section, you will integrate this code into the FSM youéhbeen developing.

You will write code to compute the parametéusb, ¢) of a line
ar +by+c=0

which bests fits all existing sonar poirits;, y;) corresponding to the obstacle in fleast-squaresense Appendix 7
gives the details of this computation. Read it carefully bedfre you start writing the code.

e Add structured code to yoluocalNavigation class to incrementally estimate the fit-line parame(iers, c).
This means that your code should maintain a current estiofatethe parameters and should be able to update
those estimates accordingly as new obstacle points aretddteAs you design your code, pay particular atten-
tion to minimizing the amount of computation done for eacWlgeacquired sonar point. You should also have
a clean way to reset the whole process. An incremental etirtilee this constitutes a simplaear filter.

e Adjust your sonar handler to call the line estimation codeefach obstacle point (according to the threshold
you identified above) detected kithersonar. (Re)plot a line (not a line segmentgionarGUI each time any
of the line parameters are updated (note that, unlike othiects,SonarGUI only draws one line at a time, so
the last line you drew will be automatically erased).

UseSonarGUI to manually drive your robot slowly past the obstacle sevares, withSonarGUI incrementally
displaying your segmented (i.e. colored) sonar data, tHmétas it is estimated, and the robot pose as it progresses
past the wall. Start each run about 0.5m before the fronterarhthe obstacle, and end about 0.5m after the end of
the obstacleTake a screenshot of these runs and post them on the Wiki.

Deliverables: Your report on the Wiki should include a bdéfcussion and answers to any questions above. Be sure
to include

¢ the error data you measured for your bumper alignment behavi
e adescription of how you defined your world coordinate frame

¢ the numeric value of the threshold you used for the sonar aledeription of what it means and how your code
uses it

e asnapshot from the end of a sonar data run showing the @dlecbot poses, appropriately colored sonar data
points, and final obstacle fit line.

Briefly describe the structure and operation of your linelieficode, and point out any particular challenges, bugs,
or other difficulties you encountered.

1An lIR filter can be computed ass = (1.0 — a)ry + arn, Wherery is an instance field holding the current value of the rangerfitt is a
constant weighting factor between 0.0 and 1.0 (e.g. 0.9)rarns the newly acquired range value.



4 Wall Following

In this section, you will add behaviors to your FSM which fintidollow an obstacle wall in the environment. These
behaviors are examples of tBeig algorithm described by Lumelsky and Stepanov (1987).

Select an obstacle with a planar wall about 1m long, and ptammewhere in the world frame you defined above.
You will begin each test run with your robot &, 0, 0) in world frame, and you'll us&onarGUI to manually point
the robot towards the selected obstacle face. Once it ineign a (slow!) collision course, let go of the controls.
Your FSM code will take over as soon as it detects the roboehasuntered the obstacle with either bumper.
Temporarily disable the code in your sonar handler, set @pdahot and obstacle, and verify that your existing bumper
alignment routine is working correctly. The robot shoulliately approach the obstacle, align to face it, and stop.
Now you'llimplement a new subroutine which aligns the robofts left side is parallel to and facing the obstacle:

e Add code to your bumper handler which is triggered whtte  is ALIGNED (including if it has just entered
that state). Once aligned, the robot should

back up a small amount

stop

rotate clockwiser /2 radians
— stop and enter a new sta#.IGNED_AND_ROTATED

The robot should end up with its left side parallel to the abls, separated by a distantef about 0.5m (from
the wall to robot frame origin). You may wish to implement arenore intermediate states, and you may adjust
the actual distance as you see fitd will also be important for the tasks you will perform in thexhsections,

S0 you may need to adjust it as you go along).

Hint: The CarmerRobot.setVelocity() method provides you with (whole-robotglocity control, but the
above sequence ultimately requires control of the robmt'sition (translation and orientation). As in the Motor
Control lab, one way to achieve this by implementing eithgereloop or closed-loop control on top of Carmen’s
velocity command interface. Or, investigate the CarmerhowRobot.moveAlongVector()

Hint: Remember, do not spend too much time handling any indivieient from Carmen.

4.1 Finding the Start of the Wall

Your robot is now almost ready to follow the obstacle wall.cBese we will ultimately be interested iouring the
whole obstacle perimeter, we will first back the robot up t $tart of the wall (observe that, so far, the robot may
currently be at any point along the obstacle wall):

e add code to an appropriate event handler so that veteie is ALIGNED_AND_ROTATE[ncluding if it
was just changed) the state is immediately changed to a ¢eyBACKING_UP

e re-enable your sonar handler, and adjust it so that
— if state is BACKING_UPand an obstacle is detected with either sonar (using yoestioid code) the

robot moves slowly backwards, tracking the wall, as descrifielow.

— ituses your linear filter to maintain continuous estimafeab® obstacle fit-line parameters, and it (re)plots
the fit line inSonarGUI whenever its parameters change. Also, re-enable (if naggsgur code which
plots the colored sonar data points.

— if state is BACKING_UPand an obstacle isot detected with either sonar, the robot stops and enters a
new statdFINDING_WALL



To track the wall, implement a feedback controller (you mag # or PD control most appropriate) which computes
robot velocity commands to keep the robot approximatelglperto the wall at distance.

Hint: You may wish to remind yourself of the formula for the pergenlar distance from a point—i.e. the robot
center point as reported most recently to your odometry leaneo a line (see appendix 7), from which you can
derive the translational error term.

Hint: You can derive the orientation error term either from thleatoorientation reported by odometoy from the
sonar data when both sonars have detected the object, oafommbination of the two sources.

Write your controller code in a structured way and triggeoitompute new robot velocity commands either periodi-
cally (e.g. every 50ms) or whenever new odometry or sona idaupplied.

Hint: If you add a Javdimer to call your control code periodically, be aware that it Vel executing in a different
thread than your Carmen event handlers. Any state varialiiesh can be read in one thread and written in another
require synchronization in both places.

4.2 Following the Wall
Now we're ready to find and follow the wall. Add code to your aohandler so that:

¢ the robot moves slowly forward whenewstate is FINDING_WALLand neither sonar detects an obstacle

e wheneverstate is FINDING_WALL and either sonar detects an obstaskate changes to a new state
TRACKING_WALLthe linear filter is reset, and the current robot pasey, #) and sonar readings are stored in
instance fields for later use.

e aslong astate is TRACKING_WALJthe robot moves slowly forward, tracking the wall with ydeedback
controller, and updating the linear filter. AgaBonarGUI should show a continuously updating display of the
robot pose, the current obstacle fit line, and the coloredisdata points.

e wheneverstate is TRACKING_WALland neithersonar detects an obstacle, the robot stops, siatd
changes to a new staWWALL_ENDEDThe wall fit line should be erased froBonarGUI ; you will now
compute a linsegmentvhich more completely represents the wall. Use the currelnd parameters, the data
you stored above when the robot first found the wall, and the=atirobot pose and sonar readings to estimate
the endpoints of a line segment representing the wall, addrasl segment to the display BonarGUI .

Hint: You have more data than is necessary to define a line segsweymu will need to develop a method to reduce
the data to compute the segment. Estimate the relaév@intiesof the different kinds of data you have, and try to
rely primarily on the most certain values. For example, yaymiecide to make the line segment coincident with the
obstacle fit line, and use the other data only to find the posstof the two endpoints on this line.

4.3 Measuring Performance

To quantify the performance of your code, you will now collseme data and plot it.
e add a new boolean instance field to yaacalNavigation class calledsaveErrors
¢ add code to your feedback controller to write a line to an ASIata file with the format

timestamp translation_error rotation_error

at each control update whenewaweErrors  is true.

e use gnuplot, matlab or a spreadsheet program of your chaiqadt each error vs. time for a single complete
run of your wall following behavior. At the end of the run, sa/screenshot of the final state of ®enarGUI
window. Post both the plot and screenshot on the Wiki.



Deliverables: Your Wiki should include your error plotsresenshots, a brief description of your procedure, a discus-
sion of the architecture and operation of your controlleldeg and descriptions of any tasks you found particularly
challenging. Be sure to state thkvalue you have used. Be prepared to demonstrate your endilefelowing
behavior at the start of the next lab.

5 Checkpoint 2 — Wednesday, March 9, 2010 3pm

1. Drive the robot alongside a wall. The SonarGUI should spldiying the sonar data and the best-fit line estimated
from that data.

2. Demonstrate your robot finding and following a wall.

6 Model Acquisition

In this final part of the lab you will complete the FSM to acgurgeometric model for an obstacle in the environment.
You can assume that the obstacle is a simple closed convgg@uland that each side of the obstacle is at least 1.5
times as wide as the front of your robot. You should not asdiaieyour robot knows anything else about the obstacle,
including the number of sides.

The FSM you have developed up to this point can serve as thia jpart of the model acquisition algorithm. Extend

it so that:

e at the end of each watitate is reset tcALIGN_ON_BUMPand the robot is commanded with velocities that
drive it slowly counter-clockwise along a circle of radiisangent to its current heading.

o for each wall, the obstacle points, fit line, and fit segmestall plotted in a color: which is distinct from
all the other wall colors (you may just randomly pickor each wall, a random color generator is provided in
SonarGUI ).

¢ the robot stops and enters a new terminal sla@NEwhen it detects that it has toured the entire obstacle.

The main challenge here is to figure out how to decide whenaheis complete (and to get all the details right).
There is more than one way to determine completion. Conslifferent possibilities, describe them in your writeup,
and think about and document the relative strengths andvessks you expect for each. Specifically consider the
relative effects of sensing and command uncertainty thatpredict, and think about and document how you could
make your termination procedure more robust to them.

Hint: what is the sum of thexternalangles of a convex polygon?

Test your behavior for at least two trials on at least two atlss of different shapes (at least four trials totgBke
screenshots of the fin@onarGUI window at the end of a good run on each obstacle, and includegsponding
error plots (i.e. at least two screenshots and four errortgJo Capture these runs on video. (be sure your videos
include identifying information at the start).

Does your robot always complete the skills you programméddiot, what are the most common sources of error?
How long does it take for the robot to complete the model asitijom task for each of the two objects you used? Can
these running times be improved? If so, how, and what mightrfue-offs be, if any?

Deliverables: Your report on the Wiki should include a brifscription of your procedure, the dimensions of the
obstacles you used, answers to the questions above, yaundots and screenshots, the velocities you used to drive
the robot in a circle, and a detailed discussion of the al&give termination methods you considered, the one you
implemented, and why. Be prepared to demonstrate youreamtidel acquisition behavior at the start of the next lab.
Also, somewhere on your Wiki you should include your FSM alittransitions and states.



7 Appendix: Lines in the Plane

We can represent any line in the plane as the locus of pgintg which satisfy the equation
ar +by+c=0 1)

where(a, b, ¢) are three parameters (constants) which define the positido@entation of the line. We require that
not all three of the parameters are simultaneously zeroesiithat were true then aflz, ) would trivially satisfy (1).
This implies that it can not even be the case that b = 0, since then: would have to be non-zero, ama point
(z,y) could satisfy (1).

As a geometric object, a line in the plane actually has ontydegrees of freedom (DoF). There are many ways to
define these, for example

e slope andy intercept (what happens when line is vertical?)

¢ slope and x intercept (what happens when line is horizontal?

e X intercept and y intercept (what happens when line is eithgical or horizontal?)

e angle with respect to x-axis (which angle, precisely?) asmgpendicular distance from origin

e etc.

As you can see, many of the possible ways to define them hawesigs certain cases. We'd of course like to avoid
such situations as much as possible, since we would like tdbleeto represersinyline without failure.

Moreover, we started by defining the line according to equatl), which has three parameters, not two. There must
be some redundancy among those three parameters. It turtisabwe can add aalgebraic constraintmong the
parameters which reduces their effective DOF to two:

a?+v?=1. (2)

So now(a, b, ¢) define a line according to (1) iff (2) holds. Or, said in a moseful way, if you are givemnytriple
of parameterga’, b, ¢'), not all zero, as described above, but not necessarilyigatis(a’)? + (b')? = 1, you can
simply compute a new sét, b, ¢) of parameterfor the same line

l, == Va2 + b2 (:= means “defined as”)

and then
a=ad/l, b="0/l, c=c/ly.
This will always be possible becaukgcan only be zero if both andb are zero. To see that this procedure does not
change the line, think of it as dividing the entire equatibthe line byi,,.
Now we can always be sure that (2) holds, so the DoF of the petearspace (three parameters - one constraint = two

DoF) matches the DoF we expect to see for a line. Furtherptrigcular constraint is convenient because it confers a
straightforward geometric meaning to the parame(ers, ). To see it, rewrite equation (1) in vector form:

n (a,b)
p = (x,y)
n-p+c = 0. 3)

Constraint (2) ensures thatis actually a unit vector. So, recalling that the dot procafa vector with a unit vector
returns the length of the component of the first vector in tinection of the second, we can interpret (3) to mean that
p is on the line iff its component in the direction afhas length—c. Sincec is fixed for all p, it turns out that this
geometrically means thai is theunit normalto the line, and: is the (signed) distance from the origin to the line in
the oppositedirection ofn. The unit normah may either point towards the line from the origin, in whiclsea will

be negative, on will point away from the line, in which casewill be positive—the math holds either way.

10



7.1 Perpendicular Distance from a Point to a Line

Our parametrization, combined with constraint (2), is em@re convenient because it gives a very simple formula
for the perpendicular (i.e. shortest) distance from anytrany pointq in the plane to the line. Again we use the dot
product to find the length of the componentepfn the direction ofn. The difference betweenc and this product
will be the signed perpendicular distant&om q to the line(a, b, ¢), in the direction ofn:

d=-c—n-q (4)

Note that as long as (2) holds the absolute valué isfthe same as the absolute value of the expression to thaf left
the equal signin (1), i.e.
|d| = |ax + by + ¢| (5)

whereq = (z,y), which makes sense—points on the line have zero distangetfre line.

7.2 Fitting a Line to a set of Points with Least-Squares

If you are given a set of points in the plage;, y;), at least two of them distinct, it may make sense to try to find
a line (a, b, ¢) which somehow bedits the points. There are different ways to define the definitibtfity. It turns

out that one particularly convenient way is to define an ewon for each point which increases in absolute value in
proportion to the perpendicular distance from that poirth&fit line, and then find the line which minimizes the sum
of the squares of these error terms.

We will not provide a derivation or justification for this press herg but we will give you the bottom line (ahem...):
a set of equations which you can use to comgut#, ¢) parameters of the best-fit line.
It's unfortunately a bit more complex to directly find the bés (a, b, ¢) which also satisfy the above constraint (2),
so instead we’ll use a simpler constraint

c=—1. (6)

for this computation. After the best-fit parameters are categh, you may of course ugg as above to compute a new
triple of parameters for the best-fit line which satisfy (2).

(6) has already given us the value of one of the three parasneft¢he best-fit line. The other two may be computed
like this:

X::in Y::Zyi Xy = sz YQ::ny Z::inyi

D = X,V — 72 (7
XY, —YZ

_ il 8

@ D (8)
YXy— XZ

b= - D ©)

As you implement this, note that the computation will be ntinaly ill-conditioned if D is near zero, which will
occur if you have fewer than two distinct points, and alseeptally in other situations. One way to handle this is to
computeD first, check whether it is very close to zero, and if so, to $kip fit-line update (i.e. to continue using the
previously-computed fit line parameters, if any).

2|f you are really interested (and we hope you are!), read athmMoore-Penrose Pseudoinversghich is the general least-squares linear
system solution method upon which the following equatiaesbased.

11



