
Massachusetts Institute of Technology

Robotics: Science and Systems I
Lab 5: Local Navigation and Error Analysis

Distributed: Wednesday, 3/2/2010, 3pm
Checkpoint 1:, Monday, 3/7/2010, 3pm

Checkpoint 2: Wednesday, 3/9/2010, 3pm
Wiki Materials and Briefings Due: Monday 3/14/2010, 3pm

Objectives and Lab Overview

In Lab 4 you explored using camera data in order to sense your environment and react appropriately to it. In lecture,
we have started to learn about navigation by considering localization and navigation-oriented sensing.Your objective in
this lab is to preliminarily integrate these different capabilities. This lab will give you the technical skills to incorporate
bump and sonar sensors. You will learn to process sensor measurements with simple filters. You will learn how to
make your robot follow a wall. Finally, you will learn how to acquire a model of the environment and use it to allow
your robot to tour an obstacle.

Your objectives in this lab are to:

• Integrate bump and sonar sensing into your robot.

• Program the robot to detect and react to collisions.

• Program the robot to reliably detect an obstacle wall and drive along it.

• Program the robot to acquire a geometric model for a convex obstacle from the sensor data.

We advise you to read the lab hand-out quickly at the start of the lab and determine what work can be done by splitting
up responsibilities among group members.

Time Accounting and Self-Assessment:
Make a dated entry called “Start of Local Navigation Lab” on your Wiki’s Self-Assessment page. Before doing any
of the lab parts below, assign a number to describe your proficiency: 1=Not at all proficient; 2=slightly proficient;
3=reasonably proficient; 4=very proficient; 5=expert

• Electronics: How proficient are you at working with sonar and bump sensors?

• Data Analysis: How proficient are you at working with measurement data and error analysis?

• Motion Control : How proficient are you at crafting robot motion algorithms using sensor feedback?

To start the lab, you should have:

• Your robot from the previous lab.

• Sonar sensor hardware: 2 sonar sensors on mounts plus “nuts and bolts” to attach them to your robot.

• 2 bump switches (1 clockwise and 1 counter-clockwise) and 2 whiskers, plus wiring, header, heat shrink, con-
nection plates and screws,

Physical Units

We remind you to use MKS units (meters, kilograms, seconds, radians, watts, etc.) throughout the course and this lab.
In particular, this means thatwhenever you state a physical quantity, you must state its units. Also show units in your
intermediate calculations.

1

1 Software and Development Environment Preliminaries

Follow the usual procedure to populate your working area with the provided lab code. On the Sun workstation, one
person should first update the source directory˜/RSS-I-pub/ by running the following commands:

cd ˜/RSS-I-pub
svn update

Now, as in previous labs, export the newLocalNavigation directory into your group’s working copy and add it
(and all subdirectories) to the list of files under version control:

cd ˜/RSS-I-group/trunk/
svn export ˜/RSS-I-pub/labs/LocalNavigation/
svn add LocalNavigation
svn commit LocalNavigation -m "added new source for LocalNa vigation lab"

We will again be using Carmen, but the camera is not used in this lab so it is not necessary to run the Carmen camera
daemon (all the other Carmen daemons which you ran in the prior lab are still necessary). As before, the Carmen
daemons must be run on the laptop mounted to your robot, but your Java code can run either on the laptop or on your
Sun workstation. In the latter case you will again need to make sure that the environment variableCENTRALHOST
is set to the IP address of your laptop, and when you run your java code you must make sure that you have either
hard-coded the same hostname into it or that you pass the hostname as a command-line parameter. You may find it
more convenient to run your code on the workstation as you develop and debug it, but you should also ensure that it
runs correctly on the laptop for autonomous operation.

2 Incorporate the Bump and Sonar Sensor Hardware

Recall from the lecture on sensors that a bump sensor is a digital on/off sensor, and a sonar is an analog sensor.

1. Create wiring harnesses for each of your bump sensors. Thesensors have three connections: COM, NO (normally
open) and NC (normally closed). When the bump switch is not actuated, the COM connection is shorted to the
NC connection. When the switch is activated as a result of therobot hitting a wall, the COM connection is shorted
to the NO terminal and the COM to NC connection is broken.

Design your wiring harnesses such that the COM terminals areconnected to ground and the NO terminals are
connected to the signal line of the digital inputs on theµOrcboard. We use pull-up resistors on theµOrcboard
such that when the bump switch is not activated, theµOrcboard reads a high logic level from the digital I/O pin.
When the the robot hits a wall, theµOrcboard will read a low logic level.

2. Mount your bump sensors onto the front of your robot. You should have two types of bump sensor: one rotates
clockwise and the other rotates counter-clockwise. You should place the clockwise sensor on the right side of the
front of your robot so that the whisker points toward the outside of the robot.

Once you have mounted the sensors and installed the whiskers, connect the bump sensors to the slow digital I/O
ports ofµOrcboard: the left bump sensor to port 0 and right to port 1. The COM header holes should connect
to the GND pin. Route your wires neatly, and bend the bump sensor whiskers to minimize contact distance (i.e.
distance from the robot to the obstacle when the bump sensor activates) and avoid hitting any mounting screws.

3. Create a wiring harness for your sonars. Both sonars communicate with theµOrcboard using the sharedI2C
communication bus. This is a two-wire, bidirectional bus where theµOrcboard is the master and the sonars are
the slave devices. In addition to the data (SDA) and clock (SCL) lines used for communication, the sonars also
require +5V and a ground connection.

The µOrcboard has twoI2C ports, one that uses 3.3V and another that uses 5V. Because the sonars run on
5V, you’ll need to use the 5V I2C port. Both ports are side-by-side just above channel 0 of the fast digital I/O

2

bank. Starting from theI2C pin closest to the fast I/O bank, theI2C connections on the four pin header are
Ground, SCL, +5V, SDA, the SDA connection being closest to the center of theµOrcboard. On the sonars, the
connector pin order, starting from the pin closes to the corner and running inward is 5V, SDA, SCL, Mode (which
you should leave unconnected) and Ground. For more information, consult the SRF02 technical specification:
http://www.robot-electronics.co.uk/htm/srf02techI2C .htm

4. Before mounting the sonar sensors, test them with the robot up on blocks. You should have two sonar sensors with
different IDs. Confirm the IDs by checking a number of red flashes on the back of the sonars when you turn on
theµOrcboard. The front sonar should have one long flash, and the rear one should have one long flash followed
by two short flashes. If you have questions, look at the exemplar robot.

Use theSonarTest java code in theLocalNavigation directory while running the carmen daemons. It will
indicate which of the bump sensors are activated and the range measurements from each sonar.SonarTest is
a terminal-based program, so to run it we suggest doing the following from a terminal (after starting carmen, of
course):

cd ˜/RSS-I-group/trunk/LocalNavigation/
ant run-test

5. Mount the sonar on the left side of your robot using the supplied mounting plates, standoffs, and L-brackets.

Deliverables: Your report on the Wiki, named “LocalNavigation Lab Report Group N”,Please include a picture of
sensors and robot and let us know what was difficult, if anything.

3 Characterize your Sensors

3.1 Familiarize yourself with the Carmen Documentation

Point your web browser tohttp://courses.csail.mit.edu/6.141/spring2011/pub/c armen/docs/
and explore Carmen’s classes and interfaces, especially theRobot class,SonarHandler interface,BumperHandler
interface, andOdometryHandler interface. The Carmen javadoc is rather sparse so we have also provided some
sample code. Look over the fileSonarTest.java , this code can be used to test your sonars and bump sensors and
illustrates using the Carmen message API.

3.2 Getting More Sensor Data from Carmen

In the previous lab, you saw how to get camera data from the robot by implementing theCameraHandler in-
terface and potentially odometry by theOdometryHandler interface. Now you’ll implement some new inter-
faces to process data from your bumper and sonar sensors. (Suggestion: You could starting your coding by cloning
VisualServo.java to LocalNavigation.java)

• Create a package for this lab’s code, and in it, write a new java class calledLocalNavigation that im-
plements theBumperHandler andSonarHandler interfaces. Your event handlers should (initially) do
nothing more than print out the sensor state. Remember to refer toSonarTest.java .

• Implement a constructor which subscribes to the relevant messages, and amain() method which initializes
the CarmenRobot object and starts the Carmen event loop (see the constructorandmain() methods in the
VisualServo class from the previous lab for examples of each).

When everything seems to be working, drive your robot aroundmanually using theSonarGUI program we have
provided, which extendsVisionGUI from the last lab with some new capabilities. Verify that thesensor readings
are reasonable.

3

3.3 Collision Detection Using Bumpers

As you progress through the lab you will implement a Finite State Machine (FSM) which will ultimately be able to
explore a polygonal obstacle. You will begin the development of this FSM in the next few sections by writing some of
its sub-routines.

• Create an integer instance field in yourLocalNavigation class namedstate , and create an integer class
constant calledSTOP_ON_BUMP.

• Modify your bumper handler to stop the robot whenstate == STOP_ON_BUMP and any bumper is de-
pressed. If you have connected your bumpers exactly as on theexemplar, the left bumper value should be
reported at index 0 (Orcboard port 0) and the right bumper should be reported at index 1 (Orcboard port 1). We
have also providedBumperData.java which provides an abstraction for detecting bumps. Feel free to use
this code.

Change your code so that the initial value ofstate is STOP_ON_BUMP, and run it to verify the behavior is as
desired (drive the robot around manually withSonarGUI ; it should automatically stop now when either bump sensor
encounters an obstacle).

3.4 Robot Alignment Using Bumpers

Now you will write an FSM sub-routine which aligns the front of the robot to be roughly parallel to a planar obstacle
facing the robot.

• Create new integer class constantsALIGN_ON_BUMP, ALIGNING, andALIGNED, each with a value unique
relative to all other state constants.

• Modify your bumper handler so that

– if state is ALIGN_ON_BUMPand either of the bumpers is depressed,state changes toALIGNING

– if state is ALIGNING (including if it was just changed)

∗ if no bumper is depressed, the robot moves forward slowly

∗ if only one bumper is depressed, the robot rotates slowly in the appropriate direction to try to activate
the other bumper

∗ if both bumpers are depressed, the robot stops andstate changes toALIGNED

Hint: Do not take too long to handle any individual message from Carmen. As long as your code is running
to handle a message, it is preventing any other message handlers (including the one you’re in) from getting called
(again). For example, if you want to move the robot, just set its velocity; do not wait for the motion to complete before
returning from the event handler. Later, when you implementOdometryHandler , you will command and control
movement in a more refined way.

Change your code so that the initial value ofstate is ALIGN_ON_BUMP, and run it to verify the behavior is as
desired, using one of the provided obstacle surfaces (initiate the align behavior by manually driving one bump sensor
into an obstacle usingSonarGUI , or just start the robot with the sensor already activated).

Test the behavior for at least three different starting positions of the robot with respect to the obstacle. In each case,
use the ruler and protractor provided in your lab kit to measure the angle of the robot face relative to the obstacle after
the robot enters theALIGNEDstate.Compute the minimum, maximum, and average error angles and include these
values in your Wiki.

4

3.5 Checkpoint 1 – Monday March 7, 2010 3pm

• Sonars and bump sensors mounted on robot.

• Demonstrate functioning sensors usingSonarTest .

• DemonstrateALIGN_ON_BUMP.

3.6 Sonar Calibration and Data Segmentation

In this part of the lab you will develop code which uses the side-facing sonars to detect the presence of an obstacle
wall and to incrementally estimate its start, end, and pose (location and orientation) in the world.

First, establish a global coordinate frame for your robot. For example, you may choose to use the coordinate systems
marked on the floor from prior labs, or you can simply define theworld frame to be identical to the robot frame at the
start of each run. In either case, your robot should be at the origin and aligned to thex axis (i.e.θ = 0) at the start of
each run (in the latter arrangement, these hold by definition). Clearly describe your coordinate system in your Wiki.

• Make yourLocalNavigation class implementOdometryHandler , and ensure that when you start your
code your robot correctly reports that it is at(x, y, θ) = (0, 0, 0), even if it has driven around in a prior run. Note
that if you do not want to restart the Carmen daemons and the Orcboard between runs you may need to write code
to reset the odometry in software (Robot.resetRobotBase() andRobot.setVelocity(0.0, 0.0))
at the start of each run.

• Choose a rectangular obstacle with one face roughly 1m long,and place it about 0.5m ahead and 0.5m to the
left (measured from robot frame origin) of the robot, with the selected face parallel to and facing the left side of
the robot.

We have provided new Carmen messages which causeSonarGUI to graphically display robot poses, sonar points,
lines, and line segments. Create and publish new instances of these messages in yourLocalNavigation code to
display all graphical data. When you are asked to include such data in your Wiki, just take a screenshot ofSonarGUI
window showing the desired data.

You should not need to modifySonarGUI for any of the tasks we ask you to perform. Before you start coding, read
carefully through the documentation at the top of that class and in the correspondingGUI* Message classes so you
understand what they do and how to use them.

• Add code to your sonar handler to plot the locations of each sonar ping, in the world frame. If you have
connected your sonars exactly as on the exemplar, Carmen should report the front sonar range at index 0 and the
rear sonar at index 1. You may assume that the reportedrange for each ping gives the perpendicular distance
from the mounting location of the corresponding sonar on theleft side of the robot to the detected object. Plot
the front and rear sonar data withdifferent symbols. Note that you will have to combine the range values
with the most recent robot odometry data to produce the coordinates of sonar hit-points in world frame.Take a
screenshots of the GUI showing both front and rear sonar pings and post it on your wiki.

UsingSonarGUI , drive your robot slowly past the obstacle several times, starting about 0.5m before the obstacle, and
ending about 0.5m after the obstacle each time. Estimate a threshold whichsegmentsthe data into obstacle points and
non-obstacle points (you may want to temporarily add print statements to display the numeric values of each ping).
Take screen shoots showing of the different runs and post theon the wiki.

• Pick two colors, one to represent non-obstacle points, and one to represent obstacle points. In your code, use
the threshold to set the colors of the plotted points appropriately. Be aware that some sonars will display zero
for infinite distance.

5

How reliably does your threshold work? Does your code ever produce a false-positive(i.e., classify a sonar point as
an obstacle reflection when the sonar was unarguably not actually pointed at the obstacle)?A false negative(a sonar
point classified as a non-obstacle point when the sonar was actually pointed at the obstacle)? Take a screenshot of
your GUI after a test run and post it on the Wiki.

In either case, you may wish to implement a simple low-pass filter on the sonar data (actually two separate filters, one
for the front sonar and one for the rear) as it is received. Forexample, you could implement a sliding-window moving
average filter, or an Infinite Impulse Response (IIR) filter1 (research those terms if you are not already familiar with
them). Ask a TA for help if you think you need a filter but are still unsure how to implement it.

3.7 Modeling the Obstacle

Now you will formulate a model of the obstacle wall as a line (and later, as a linesegment) in world frame. The overall
idea is that your robot will decide when an obstacle wall has begun, incrementally estimate the parameters of a line
which fits the obstacle data points as they are acquired, and then decide when the obstacle has ended.

You’ll develop this code in two stages. First, you will focuson the model acquisition and visualization. Then, in the
next section, you will integrate this code into the FSM you have been developing.

You will write code to compute the parameters(a, b, c) of a line

ax+ by + c = 0

which bests fits all existing sonar points(xi, yi) corresponding to the obstacle in theleast-squaressense.Appendix 7
gives the details of this computation. Read it carefully before you start writing the code.

• Add structured code to yourLocalNavigation class to incrementally estimate the fit-line parameters(a, b, c).
This means that your code should maintain a current estimateof of the parameters and should be able to update
those estimates accordingly as new obstacle points are detected. As you design your code, pay particular atten-
tion to minimizing the amount of computation done for each newly acquired sonar point. You should also have
a clean way to reset the whole process. An incremental estimator like this constitutes a simplelinear filter.

• Adjust your sonar handler to call the line estimation code for each obstacle point (according to the threshold
you identified above) detected byeithersonar. (Re)plot a line (not a line segment) inSonarGUI each time any
of the line parameters are updated (note that, unlike other objects,SonarGUI only draws one line at a time, so
the last line you drew will be automatically erased).

UseSonarGUI to manually drive your robot slowly past the obstacle several times, withSonarGUI incrementally
displaying your segmented (i.e. colored) sonar data, the fit-line as it is estimated, and the robot pose as it progresses
past the wall. Start each run about 0.5m before the front corner of the obstacle, and end about 0.5m after the end of
the obstacle.Take a screenshot of these runs and post them on the Wiki.

Deliverables: Your report on the Wiki should include a briefdiscussion and answers to any questions above. Be sure
to include

• the error data you measured for your bumper alignment behavior

• a description of how you defined your world coordinate frame

• the numeric value of the threshold you used for the sonar and adescription of what it means and how your code
uses it

• a snapshot from the end of a sonar data run showing the collected robot poses, appropriately colored sonar data
points, and final obstacle fit line.

Briefly describe the structure and operation of your linear filter code, and point out any particular challenges, bugs,
or other difficulties you encountered.

1An IIR filter can be computed asrf = (1.0 − α)rf + αrn whererf is an instance field holding the current value of the range filter,α is a
constant weighting factor between 0.0 and 1.0 (e.g. 0.7), and rn is the newly acquired range value.

6

4 Wall Following

In this section, you will add behaviors to your FSM which find and follow an obstacle wall in the environment. These
behaviors are examples of theBug algorithm described by Lumelsky and Stepanov (1987).

Select an obstacle with a planar wall about 1m long, and placeit somewhere in the world frame you defined above.
You will begin each test run with your robot at(0, 0, 0) in world frame, and you’ll useSonarGUI to manually point
the robot towards the selected obstacle face. Once it is aligned on a (slow!) collision course, let go of the controls.
Your FSM code will take over as soon as it detects the robot hasencountered the obstacle with either bumper.

Temporarily disable the code in your sonar handler, set up the robot and obstacle, and verify that your existing bumper
alignment routine is working correctly. The robot should reliably approach the obstacle, align to face it, and stop.

Now you’ll implement a new subroutine which aligns the robotso its left side is parallel to and facing the obstacle:

• Add code to your bumper handler which is triggered whenstate is ALIGNED(including if it has just entered
that state). Once aligned, the robot should

– back up a small amount

– stop

– rotate clockwiseπ/2 radians

– stop and enter a new stateALIGNED_AND_ROTATED

The robot should end up with its left side parallel to the obstacle, separated by a distanced of about 0.5m (from
the wall to robot frame origin). You may wish to implement oneor more intermediate states, and you may adjust
the actual distanced as you see fit (d will also be important for the tasks you will perform in the next sections,
so you may need to adjust it as you go along).

Hint: The CarmenRobot.setVelocity() method provides you with (whole-robot)velocity control, but the
above sequence ultimately requires control of the robot’sposition (translation and orientation). As in the Motor
Control lab, one way to achieve this by implementing either open-loop or closed-loop control on top of Carmen’s
velocity command interface. Or, investigate the Carmen methodRobot.moveAlongVector() .

Hint: Remember, do not spend too much time handling any individual event from Carmen.

4.1 Finding the Start of the Wall

Your robot is now almost ready to follow the obstacle wall. Because we will ultimately be interested intouring the
whole obstacle perimeter, we will first back the robot up to the start of the wall (observe that, so far, the robot may
currently be at any point along the obstacle wall):

• add code to an appropriate event handler so that whenstate is ALIGNED_AND_ROTATED(including if it
was just changed) the state is immediately changed to a new state,BACKING_UP.

• re-enable your sonar handler, and adjust it so that

– if state is BACKING_UPand an obstacle is detected with either sonar (using your threshold code) the
robot moves slowly backwards, tracking the wall, as described below.

– it uses your linear filter to maintain continuous estimates of the obstacle fit-line parameters, and it (re)plots
the fit line inSonarGUI whenever its parameters change. Also, re-enable (if necessary) your code which
plots the colored sonar data points.

– if state is BACKING_UPand an obstacle isnot detected with either sonar, the robot stops and enters a
new stateFINDING_WALL.

7

To track the wall, implement a feedback controller (you may find P or PD control most appropriate) which computes
robot velocity commands to keep the robot approximately parallel to the wall at distanced.

Hint: You may wish to remind yourself of the formula for the perpendicular distance from a point—i.e. the robot
center point as reported most recently to your odometry handler—to a line (see appendix 7), from which you can
derive the translational error term.

Hint: You can derive the orientation error term either from the robot orientation reported by odometryor from the
sonar data when both sonars have detected the object, or froma combination of the two sources.

Write your controller code in a structured way and trigger itto compute new robot velocity commands either periodi-
cally (e.g. every 50ms) or whenever new odometry or sonar data is supplied.

Hint: If you add a JavaTimer to call your control code periodically, be aware that it willbe executing in a different
thread than your Carmen event handlers. Any state variableswhich can be read in one thread and written in another
require synchronization in both places.

4.2 Following the Wall

Now we’re ready to find and follow the wall. Add code to your sonar handler so that:

• the robot moves slowly forward wheneverstate is FINDING_WALLand neither sonar detects an obstacle

• wheneverstate is FINDING_WALL and either sonar detects an obstacle,state changes to a new state
TRACKING_WALL, the linear filter is reset, and the current robot pose(x, y, θ) and sonar readings are stored in
instance fields for later use.

• as long asstate is TRACKING_WALL, the robot moves slowly forward, tracking the wall with yourfeedback
controller, and updating the linear filter. Again,SonarGUI should show a continuously updating display of the
robot pose, the current obstacle fit line, and the colored sonar data points.

• wheneverstate is TRACKING_WALLand neithersonar detects an obstacle, the robot stops, andstate
changes to a new stateWALL_ENDED. The wall fit line should be erased fromSonarGUI ; you will now
compute a linesegmentwhich more completely represents the wall. Use the current fit line parameters, the data
you stored above when the robot first found the wall, and the current robot pose and sonar readings to estimate
the endpoints of a line segment representing the wall, and add this segment to the display inSonarGUI .

Hint: You have more data than is necessary to define a line segment,so you will need to develop a method to reduce
the data to compute the segment. Estimate the relativecertaintiesof the different kinds of data you have, and try to
rely primarily on the most certain values. For example, you may decide to make the line segment coincident with the
obstacle fit line, and use the other data only to find the positions of the two endpoints on this line.

4.3 Measuring Performance

To quantify the performance of your code, you will now collect some data and plot it.

• add a new boolean instance field to yourLocalNavigation class calledsaveErrors

• add code to your feedback controller to write a line to an ASCII data file with the format

timestamp translation_error rotation_error

at each control update wheneversaveErrors is true.

• use gnuplot, matlab or a spreadsheet program of your choice to plot each error vs. time for a single complete
run of your wall following behavior. At the end of the run, save a screenshot of the final state of theSonarGUI
window. Post both the plot and screenshot on the Wiki.

8

Deliverables: Your Wiki should include your error plots, screenshots, a brief description of your procedure, a discus-
sion of the architecture and operation of your controller code, and descriptions of any tasks you found particularly
challenging. Be sure to state thed value you have used. Be prepared to demonstrate your entire wall following
behavior at the start of the next lab.

5 Checkpoint 2 – Wednesday, March 9, 2010 3pm

1. Drive the robot alongside a wall. The SonarGUI should be displaying the sonar data and the best-fit line estimated
from that data.

2. Demonstrate your robot finding and following a wall.

6 Model Acquisition

In this final part of the lab you will complete the FSM to acquire a geometric model for an obstacle in the environment.
You can assume that the obstacle is a simple closed convex polygon, and that each side of the obstacle is at least 1.5
times as wide as the front of your robot. You should not assumethat your robot knows anything else about the obstacle,
including the number of sides.

The FSM you have developed up to this point can serve as the initial part of the model acquisition algorithm. Extend
it so that:

• at the end of each wallstate is reset toALIGN_ON_BUMP, and the robot is commanded with velocities that
drive it slowly counter-clockwise along a circle of radiusd tangent to its current heading.

• for each wall, the obstacle points, fit line, and fit segment are all plotted in a colorc which is distinct from
all the other wall colors (you may just randomly pickc for each wall, a random color generator is provided in
SonarGUI).

• the robot stops and enters a new terminal state,DONE, when it detects that it has toured the entire obstacle.

The main challenge here is to figure out how to decide when the tour is complete (and to get all the details right).
There is more than one way to determine completion. Considerdifferent possibilities, describe them in your writeup,
and think about and document the relative strengths and weaknesses you expect for each. Specifically consider the
relative effects of sensing and command uncertainty that you predict, and think about and document how you could
make your termination procedure more robust to them.

Hint: what is the sum of theexternalangles of a convex polygon?

Test your behavior for at least two trials on at least two obstacles of different shapes (at least four trials total).Take
screenshots of the finalSonarGUI window at the end of a good run on each obstacle, and include corresponding
error plots (i.e. at least two screenshots and four error plots). Capture these runs on video. (be sure your videos
include identifying information at the start).

Does your robot always complete the skills you programmed? If not, what are the most common sources of error?
How long does it take for the robot to complete the model acquisition task for each of the two objects you used? Can
these running times be improved? If so, how, and what might the trade-offs be, if any?

Deliverables: Your report on the Wiki should include a briefdescription of your procedure, the dimensions of the
obstacles you used, answers to the questions above, your error plots and screenshots, the velocities you used to drive
the robot in a circle, and a detailed discussion of the alternative termination methods you considered, the one you
implemented, and why. Be prepared to demonstrate your entire model acquisition behavior at the start of the next lab.
Also, somewhere on your Wiki you should include your FSM withall transitions and states.

9

7 Appendix: Lines in the Plane

We can represent any line in the plane as the locus of points(x, y) which satisfy the equation

ax+ by + c = 0 (1)

where(a, b, c) are three parameters (constants) which define the position and orientation of the line. We require that
not all three of the parameters are simultaneously zero, since if that were true then all(x, y) would trivially satisfy (1).
This implies that it can not even be the case thata = b = 0, since thenc would have to be non-zero, andno point
(x, y) could satisfy (1).

As a geometric object, a line in the plane actually has onlytwo degrees of freedom (DoF). There are many ways to
define these, for example

• slope and y intercept (what happens when line is vertical?)

• slope and x intercept (what happens when line is horizontal?)

• x intercept and y intercept (what happens when line is eithervertical or horizontal?)

• angle with respect to x-axis (which angle, precisely?) and perpendicular distance from origin

• etc.

As you can see, many of the possible ways to define them have issues in certain cases. We’d of course like to avoid
such situations as much as possible, since we would like to beable to representany line without failure.

Moreover, we started by defining the line according to equation (1), which has three parameters, not two. There must
be some redundancy among those three parameters. It turns out that we can add analgebraic constraintamong the
parameters which reduces their effective DOF to two:

a2 + b2 = 1. (2)

So now(a, b, c) define a line according to (1) iff (2) holds. Or, said in a more useful way, if you are givenany triple
of parameters(a′, b′, c′), not all zero, as described above, but not necessarily satisfying (a′)2 + (b′)2 = 1, you can
simply compute a new set(a, b, c) of parametersfor the same line:

ln :=
√

a2 + b2 (:= means “defined as”)

and then
a = a′/ln b = b′/ln c = c′/ln.

This will always be possible becauseln can only be zero if botha andb are zero. To see that this procedure does not
change the line, think of it as dividing the entire equation of the line byln.

Now we can always be sure that (2) holds, so the DoF of the parameter space (three parameters - one constraint = two
DoF) matches the DoF we expect to see for a line. Further, thisparticular constraint is convenient because it confers a
straightforward geometric meaning to the parameters(a, b, c). To see it, rewrite equation (1) in vector form:

n := (a, b)

p := (x, y)

n · p+ c = 0. (3)

Constraint (2) ensures thatn is actually a unit vector. So, recalling that the dot productof a vector with a unit vector
returns the length of the component of the first vector in the direction of the second, we can interpret (3) to mean that
p is on the line iff its component in the direction ofn has length−c. Sincec is fixed for allp, it turns out that this
geometrically means thatn is theunit normalto the line, andc is the (signed) distance from the origin to the line in
theoppositedirection ofn. The unit normaln may either point towards the line from the origin, in which casec will
be negative, orn will point away from the line, in which casec will be positive–the math holds either way.

10

7.1 Perpendicular Distance from a Point to a Line

Our parametrization, combined with constraint (2), is evenmore convenient because it gives a very simple formula
for the perpendicular (i.e. shortest) distance from any arbitrary pointq in the plane to the line. Again we use the dot
product to find the length of the component ofq in the direction ofn. The difference between−c and this product
will be the signed perpendicular distanced fromq to the line(a, b, c), in the direction ofn:

d = −c− n · q (4)

Note that as long as (2) holds the absolute value ofd is the same as the absolute value of the expression to the leftof
the equal sign in (1), i.e.

|d| = |ax+ by + c| (5)

whereq = (x, y), which makes sense—points on the line have zero distance from the line.

7.2 Fitting a Line to a set of Points with Least-Squares

If you are given a set of points in the plane(xi, yi), at least two of them distinct, it may make sense to try to find
a line (a, b, c) which somehow bestfits the points. There are different ways to define the definition of “fit”. It turns
out that one particularly convenient way is to define an errorterm for each point which increases in absolute value in
proportion to the perpendicular distance from that point tothe fit line, and then find the line which minimizes the sum
of the squares of these error terms.

We will not provide a derivation or justification for this process here2, but we will give you the bottom line (ahem...):
a set of equations which you can use to compute(a, b, c) parameters of the best-fit line.

It’s unfortunately a bit more complex to directly find the best-fit (a, b, c) which also satisfy the above constraint (2),
so instead we’ll use a simpler constraint

c = −1. (6)

for this computation. After the best-fit parameters are computed, you may of course useln as above to compute a new
triple of parameters for the best-fit line which satisfy (2).

(6) has already given us the value of one of the three parameters of the best-fit line. The other two may be computed
like this:

X :=
∑

i

xi Y :=
∑

i

yi X2 :=
∑

i

x2

i
Y2 :=

∑

i

y2
i

Z :=
∑

i

xiyi

D := X2Y2 − Z2 (7)

a =
XY2 − Y Z

D
(8)

b =
Y X2 −XZ

D
(9)

As you implement this, note that the computation will be numerically ill-conditioned if D is near zero, which will
occur if you have fewer than two distinct points, and also potentially in other situations. One way to handle this is to
computeD first, check whether it is very close to zero, and if so, to skipthis fit-line update (i.e. to continue using the
previously-computed fit line parameters, if any).

2If you are really interested (and we hope you are!), read about the Moore-Penrose Pseudoinverse, which is the general least-squares linear
system solution method upon which the following equations are based.

11

