Massachusetts Institute of Technology

Robaotics. Science and Systemsl|

Lab 7: Grasping and Object Transport

Distributed: Wednesday, 3/30/2010, 3pm
Checkpoint: Monday, 4/4/2010, 3pm
Due: Wednesday, 4/6/2010, 3pm

Objectivesand Lab Overview

Your objective in this lab is to understand grasping and @lijansport. You will build an arm with a gripper for your
robot. You will incorporate the arm in your robot. You willeh use the arm to pick up objects and transport them to
desired locations.

This lab will give you the technical skills to incorporateagping and manipulation capabilities into your robot. This
lab will also enhance your knowledge of the mechanics ofaibjim contact which is an important aspect of interfacing
computation to the physical world.

Time Accounting and Self-Assessment:

Make a dated entry called “Start of Grasping Lab” on your Wilbelf-Assessment page. Before doing any of the lab
parts below, answer the following questions:

e Programming: How proficient are you at writing large programs in Java (ahe start of this lab)?
(1=Not at all proficient; 2=slightly proficient; 3=reasomaproficient; 4=very proficient; 5=expert.)

e Hardware: How proficient are you at modifying the hardware of your rtiho
(1=Not at all proficient; 2=slightly proficient; 3=reasomaproficient; 4=very proficient; 5=expert.)

e Mechanics of Manipulation: How proficient are you at mechanics and kinematics?
(1=Not at all proficient; 2=slightly proficient; 3=reasomaproficient; 4=very proficient; 5=expert.)
¢ Visual Navigation: How proficient are you at using the vision and navigatiorvgafe on your robot?
(1=Not at all proficient; 2=slightly proficient; 3=reasomaproficient; 4=very proficient; 5=expert.)

To start the lab, you should have:

e The arm/gripper kit: 12 laser-cut pieces for the arm andggip3 servos, 1 break-beam sensor, mounting hard-
ware.

e Your notes from the Grasping, Kinematics, and Manipulak&mures
In addition to this lab specification, you should have théofeing handouts:

1. Arm Assembly Instructions

2. Sharp IS471F Datasheet, available online

Physical Units

We remind you to use MKS units (meters, kilograms, secorabans, watts, etc.) throughout the course and this lab.
In particular, this means thathenever you state a physical quantity, you must state its. kiso show units in your
intermediate calculations.

Part 1. Building the Arm

In this part of the lab you will use the kit we give you to assédnd install an arm with gripper for your robot. The
exemplar robot will be available for inspection. It shows tnd result of your assembly. The arm assembly handout
contains pictorial step-by-step assembly instructions.

Before assembling the arm it is a good idea to test the sefMas shoulder servo MUST always be run with the
robot powered by the battery, not the AC adapter due to its current requirements. You can test the servos by
starting Part 2 and testing the servos in parallel with sofhtkeeoassembly steps.

Deliverables: Create a new page on your wiki called “Gragplrab Report Group N.” Take some pictures of your arm
while being constructed, and a picture of the final result, these on your wiki page. Please record in the difficulties
you encountered, if any.

Part 2. Controlling the Arm with Carmen

You should begin by adding the new lab source code to yourmrepository following the usual procedure. Carmen
contains support for your arm servos and the breakbeam rseritton uor c_daenon, and from the Java class
libraries in theAr mandAr niVessage classes, as well as the mHandl er interface. These enable you to set (or
get) the angular positions of the arm, and get the state difrrek-beam sensor. It will be helpful to review the Carmen
API for these classes before beginning the lab.

Arm parameters

The ORC board (and Carmen, by extension) has the ability@tgservosfastDIO ports 0-3 on the ORC board).

In the source code you are given, Carmen assumes that allofgovos are identical, and each accepts a 16 bit PWM
value which is integrated by the servo electronics into atiohal position. However, each model of servo that you
have been given has specific maximum and minimum anglesttbanm iexpress. These correspond to maximum and
minimum PWM values. You will need to add code (in your own w@ite, not CARMEN) to handle this differenti-
ation. In addition, you will need to calibrate each servoapping from PWM to the corresponding angular value.
Instructions for how to do this will be covered in the Arm Canhsubsection of the lab.

Arm classlibraries

You can view the current state of tlie mby subscribing and handliny mviessage’s or by querying the\r mclass
using the static methoqhubl i ¢ Ar mvessage Carnen. Arm query();

To subscribe to thér mvessage class, implement th&r nHandl er interface, and the appropriate handler:
public void handl e (ArnVessage nessage);

The Ar mvessage contains more data than just the arm angles, and the fullagedsrmat is:

public class Armvessage {

public double joint_angles[];

public int numjoints;

public double joint_currents[]; \\ COMWENT: NOI USED
public int numcurrents;

public int gripper_closed;

public doubl e joint_angul ar_vel s[];

public int numyvels;

public int flags;

public doubl e tinestanp;

public char host[];

Thej oi nt _angl es[] field contains the current PWM values of all your servo mqtansl the length matches both
thenum j oi nt s field and also thar m_num j oi nt s parameterircar nen. i ni .

The nOrcborad does not sense currents of the servos, theljeddnet _cur rent s[] do not have any useful infor-
mation.

Thegri pper _cl osed field has value 0 when the break-beam sensor is clear or vailhed the break-beam sensor
is obstructed by an object. The break-beam sensor plugslmiDIO port 7 of the ORC board.

Arm control

Your goal in this part of the lab is to implement simple, rbleacontrol of the arm. We have provided for you a helper
GUI for exploring arm control, calledr nPoseGui .

For each arm servo, you need to determine the following dpigst

e MAX PWM

e M N_PWM
The servo cannot be physically moved past these valuesuifrypthe command will either be ignored, or worse, the
servo motor will chatter against the physical limits. Yowsld take into account not only the range of motion of the

servo itself, but also within the context of the arm’s ran§enotion. The biggest servo, for the shoulder joint, can
rotate continously, so be careful to set the maximum andmuini PWM of the servo.

For each servo, use the slider in themPoseCui to determine what the extreme PWM values are. Be very careful
as the arm may move very fast when you do this. Setting the P\llvevto zero will disable a servo. If you happen to
exit the program without setting the values to zero your aiem still be trying to hold a position. You can use the class
Cl ear Ar mto reset the arm. Run it gsava Gr aspi ng. C ear Ar mto reset the arm. This is a useful command
when you are developing your code. We have also providedttadeesets the servos if you exit the carmen window
or use control-c. If for some reason, the servos are leftihgld position, you should manually cut their power.

You also need to know what PWM values correspond to actudeanm order to compute a conversion between
angles and PWM ticks. For each servo, move the servo to thiggrothat you consider to b, = 0 radians using
the slider inAr mPoseCui . Note the PWM value, call iPWM ;. Now, move the servo to some other angle, such as
02 = 7/2 radians. You will have to measure this angle carefully. Nbie PWM value as well, call iPWM 5. You

can use these two data points to compute a conversion bebmgées and PWM by fitting a line and interpolating for
desired values. The slope of your line will be:

0y — 61

"= PWM, — PWM; @
The theta-intercept of your line can be determined by plug@i one data point:
Gi:91—m-PWM1 (2)

Recognize that you'll need separate conversion factorsdoh servo motor, including the gripper.

Now, create a new file calle@r aspi ng. j ava in which you will place the code for this lab. Begin by writing
a simple Java program that impleme#tsnHandl er . Using the appropriate conversion factors for each servo,
write handl e(Ar mvessage nsg) , which moves each servo through its full range of motion, mgall servos
concurrently. This handler should repeat the motion indtefin Note that this will require implementing a (fairly
simple) finite state machine inside your arm message handler

Remember you can rynava G- aspi ng. Cl ear Ar mto reset the arm.

Onecaveat: You should be careful about moving any servo through tocelargange of motion in a single step. You
might want to experiment with how large a range of motion esatvo can tolerate, but a good rule of thumb is that
no servo should move more than 1 radian per iteration. Moving faster could cause the servos to skip, fuses to
blow or worse, an unexpected motion could slam the arm irgagtbund destroying it. This slew rate control can be
accomplished by implementing a clamped feed-forward obstep for each servo.

Hint: You may want to write a joint controller class and create fagses for each of the shoulder, wrist, and gripper

joints. This will help you to capture the common methods fawe control, while enabling specific behaviors for each
joint.
Deliverables: Your wiki should include

e Your minimum and maximum PWM measurements for each servo

e Your angle measurements and your angle-to-PWM conver8iomesich arm

Arm control and inver se kinematics

Your goal in this part of the lab is to characterize the grifgesition in terms of joint angles. Notice that you have two
revolute joints (the shoulder and the elbow) that contrelghbsition of the end effector. There will, in general, be two
sets of solutions mapping between the joint angles and #adter position in body coordinates. You will encounter
this ambiguity in your computation, and you must choose ahgisn (based on continuity, servo bounds, etc).

e Measure the length of each arm segment. Note: use the distadfethe gripper as the end of your kinematic
chain.

e Determine the forward kinematic equation that maps joigiesto end effector positions.
e Determine the inverse kinematic equation that maps endteffpositions to joint angles.

e Choose an end effector position in thez plane in the robot frame. For each of several end effectatipos,
compute the appropriate joint angles, move the servos sethngles, and measure the position of the end effector
in body coordinates.

¢ Place an objectin the gripper, and close the gripper. (Youlshbe able to close the gripper using a Java program.
Do not force the gripper jaws closed by hand.) Repeat the uneaent process with the object in the gripper.

Deliverables: Your wiki should contain a set of explicit@sptions you made in building an inverse kinematic arm
controller. You should also discuss how accurate your adletris, and how you might correct it. Are there any failure
modes and what are they, if any?

e Your measurements of your arm

e Your mathematical model of the inverse kinematics

e The expected and measured end effector positions with ahdwtian object in the grasp.
Optional: You might notice that the PWM controller is a feed-forwardtoller, as opposed to a feed-back controller.
The ORC board does not contain enough input lines to allow aqtip the servos with encoders and so that you could

use PD controller that you implemented in earlier labs. Haweyou do have an additional sensor: the camera. How
might you incorporate the camera to correct for arm corgratrors?

Checkpoint: Monday, April 5

The staff will walk around at BEGINNING of lab to do a checkodffle will be looking to see that:
e Your arm is constructed and mounted on the robot
e You can control your arm via the ArmPoseGUI
e You can control your arm via inverse kinematics

Part 3. Grasping and Transporting an Object

Arm gymnastics

In this part of the lab you will use the Carmen library to budlan behaviors. The arm control libraries can be used
to program “arm gymnastics”. Write a program that contraks &rm through a sequence of moves: open-gripper,
close-gripper, move-up, bend-elbows, touch-the-groinodio this you will have to calibrate the arm to differentiate
between an open and closed arm, and to detect when the arhe®ine ground. detect impediments. Make sure you
slew the commanded servo positions (only move at most orianrger iteration), otherwise you will destroy your
arm when it mistakenly hits the ground [which is not fun].

Write a program to implement:
open-gripper

close-gripper

move-up with a desired angle

A w bR

bend-elbow with a desired angle
5. move-to-ground
and then demonstrate how you can sequence these behaviarsiag/mnastics”.

Deliverables: Your lab report should show a video sequeridtkearm gymnastics and an explanation for how you
controlled each movement.

Grasp and Transport

In this part of the lab you will pick up an object and move it &aified distance. To begin, place the arm of your

robot on the floor, in an open position. Then, manually platelgect (one of the colored cubes) in the gripper. This

action should be detected by the break-beam sensor, whichdsthen trigger a grasping behavior for the arm. Once
the object is grasped, the arm should be lifted and the obfemild be transported some distance forward. You may
choose any distance and direction for this displacement.

To complete this functionality, write software to do theléaling:
1. Initialize the arm and move the joints to their pre-graggposition. Servo the gripper to a open position where
the break-beam sensor has a clear field of view.

2. Wait for an object to penetrate the grasp region of thepgrifpy monitoring the break-beam sensor. (Remember:
the break beam sensor should be connected to slow digitgidror.)

3. Grasp the penetrating object.

This part is a little tricker than simply closing the hand.uXwill have to calibrate your gripper for two things: (1)
to decide how tight to close it around the object, and (2) tkersure that you maintain complete closure of your
object so that when you lift it off the ground it will not fallub of the hand.

If you want to check whether the object has fallen out, how ydu do so? Is this a reliable method? Can you
think of a more reliable one? (Hint: a different sensor)

4. Lift the grasped object off the ground.

Your lifting method should detect and recover from errorroEnoccurs when your hand drops the object. Im-
plement recovery by trying to grasp once again. The breakrbeill also give you an empty hand signal in this
case.

5. Move the robot to deposit the object at the new location.

6. Place the object on the ground and move the robot back twigsal starting point. Measure the error between
the desired location of the object and its true placemerddueral trials.

You may find it helpful to begin by drawing a diagram of your finstate machine, and identifying which components
of your system are active in each state.

Hint 1. The break-beam sensor will work best at a static pose, witlythpper partially open. As the gripper changes
pose, the orientation of the sensors will change and youiély experience false-positives.

Hint 2: We have provided the utility class8ensor Ti neAver age. j avaandSensor Ti meThr eshol d. j ava.
You may find these handy for filtering out sensor transientssaabilizing the perceptual states of your grasping FSM.

Deliverables: Your wiki report should include a video ofttask and an explanation for your implementations. Please
include a discussion of your calibration parameters usedrfgppediments (for closing the hand with and without the
object) and for detecting when the object slips out of thesgradow reliable is your control of arm gymnastics? How
reliable is the control for grasping? How accurate is theplacement of the object? Discuss the failure modes of this
functionality. Please also give us a pointer to the code amgl\grs to the questions above.

Part 4. Searching For and Retrieving an Object

Your goal in this part of the lab is to integrate the objeckpamd-carry implementation from the previous section,
with your visual servoing code from the Visual Servoing LAlVe're ecological roboticists — we recycle.) The basic
idea is to visually servo to a block of a specific color and rr@iman appropriate fixation distance, such that you can
then retrieve and transport the object. You are free to usegwn code from the Visual Servoing Lab or the solution
code. The issues of colour calibration, blob centering, ate the same regardless of whether you use your solution
or ours.

If you recall, theBl obTr acki ng class contains thappl y(1 nage src, | mage dest) method, which ex-
tracts all the blobs of the appropriate hue from $iee image, and highlights the blobs in tidest image. Your
Bl obTr acki ng class is not calibrated to the new object, so you must firsaidrate.

Recall from the Visual Servoing Lab that this is accomplisbg holding the object you wish to calibrate within the
camera’s view, while outputting the HSB histogram inYiesi onGUI . If the object you wish to track is the dominant
feature in the scene, then the dominant hue in the histognamdbe the hue of your object. Once you have identified
the hue of your block, edit the target hue level used by yasdifier (in the solution code f&fi sual Servo. j ava,

this is done by setting thiear get _hue_I| evel parameter wittPar am set , so that no physical changes need to
be made tdl obTr acki ng. j ava. You can alternatively set these parameters in your loaalnen. i ni file, or
usingpar am edi t to change the live settings). Test your blob tracker by piggiour object in the field of view of
the camera, and watch the displayMinsi onGUI . You should see your object highlighted in the camera panel.

The next important piece is the visual servoing, which reggithat you know the size of the object in the field of
view to determine the appropriate stand-off: if the objeaiears too small, you need to drive closer, and if the object
appears too large, you would need to back up. Your abilityetegmine the distance to the object depends on knowing
how large the object is. Let us assume that the radius redlipehe blob tracker is a reasonable approximation of
the object width. Measure the object’s width, and modify tdrget radius size used by your blob tracker (again, the
solutions utilize thePar amclass for setting thé ar get _r adi us parameter). Test your visual servoing code by
having your robot servo to the object as you did in the Viswal/8ing Lab.

The final parameter you need to calibrate is the stand-dfidé®. You need to determine how far the block is from the
center of the camera when the block is inside the grippeikbiobeam. You should be able to measure this parameter
directly by placing the object in the break-beam.

Once you have determined that you are able to visually sertietobject, you need to co-ordinate the object pick-and-

carry implementation from Part 3 with your visual servoiragle. In particular, once the break-beam sensor detects
the object, you should stop the robot translating and stopgssing the visual servoing commands. At the same time,
you should start closing the gripper preparatory to liftihg object.

Deliverables: Your wiki report should contain:
e A screenshot of your block

Your calibration histogram
Your calibration parameters (hue, size, stand-off disegnc

¢ A description of each module and algorithm in each, the ARts/ben the modules

A description of your robot operation. How well does youueilsservoing work in this lab compared to the Visual
Servoing Lab? Include a video of your robot running fully@uamously, as in the previous lab part.

The failure modes of this functionality
e The task allocations within your team

Optional: You might consider using a few different stand-off distayaad implementing your visual servoing code
in the following manner:
1. Retract the arm fully, so that it is out of the field of viewtbé camera

2. Visually servo to the block with a stand-off distance stitdit you are close, but not yet gripping the block, for
example, roughly .5m away.

3. Lower the arm so that the gripper is at the right height tp tre block

4. Visually servo to the block with the correct stand-off & d&ble to grip the block, and monitor the break-beam
sensor

5. Start lifting once the break-beam sensor detects anabsta
Why might we recommend this visual servoing method?

Wrap Up

Report the time spent on each part of the lab in person-hout#aicate what elements were done independently or
in pairs, triples or as a full group.

