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Navigation: Mappingg g

RSS Lecture 16
Friday 9 April 2010

Prof. TellerProf. Teller
Text: Siegwart and Nourbakhsh Ch. 5, 6

Dudek and Jenkin Ch. 8

Navigation Overview
• Where am I?

– Localization (Lecture 8)
– Assumes perfect map, imperfect sensingp p, p g

• How can I get there from here?
– Planning (Lectures 9-11)
– Assumes perfect map, sensing, and actuation

• What have I observed in my travels?
– Mapping (Today)Mapping (Today)
– Assumes perfect localization, noisy sensing

• Can I build map and localize on-line?
– Yes; using SLAM
– Assumes no prior knowledge of the world
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What Environment was That?

Bosse, Leonard, Newman, Teller, “An Atlas Framework for Scalable Mapping,” ICRA 2003

Ground-truth excursion
(2.5 hours, 2.2 kilometers)

Generated Atlas map
(101 linked map frames)

What are maps?
• Collection of elements or features at some scale 

of interest, and a representation of the geometric 
and/or topological relationships among them

• Also semantic information (metadata)
– Segmentation, place/object naming, function, etc.

• We will focus on geometry and topology
– But semantics are critical to real-world applications!– But semantics are critical to real-world applications!
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History
• Early surveying, mapping methods:

– Egyptians (c. 1400 B.C.), Nile floods, taxation
• Plumb bobs, sighting instruments, area measurement

– Greeks (c. 550 B.C.), trade, warfare, engineering
• Coastal, nautical maps for marine navigation
• Dug Eupalinos tunnel, 1036m with 60cm (!) error

– Europeans (16th century onward), 
foundational computational methods
• Gauss, method of least squares (1809)

Triangulation of Hanover, 1820-1850
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Demetris Koutsoyiannis

Why maps?  From where?
• Essential for a wide variety of human, 

robotic activities (localization, planning)
• Maps are highly labor-intensive to create:

– Exploration (global coverage)
– Measurement (local coverage)
– Validity (correctness, error bounds)
– Currency (freshness)
– As-planned vs. as-built building models

N t t  ti  t d t / ti  – Not to mention metadata/semantics …

• Map creation is an ideal robotics task!
– Achieving a robust, sustained, large-area, 

fully autonomous mapping capability has been
an “open” (i.e., unsolved) problem for decades
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• Continuous / “vector” format
– Points, linear or curved 

segments, surface patches
Leonard et al., AAAI 2002

Some robot map types

• Discrete / “raster” format
– Occupancy grids

• Metrical / Topological Chatila, SSS 2004Konolige

• Global / Local

• Hybrid Metrical / Topological Local, Metrical, Qualitative

Chatila, SSS 2004

Polaroid sonar ring
12 range returns, 

Commonly used range sensors

SICK laser scanner

one per 30 
degrees, at ~4 Hz

Robot

(+ servoed 
rotation) 

180 range returns, 
one per degree, 

at 5-75 Hz

Other possibilities:  Stereo/monocular vision; Robot body (e.g. bump/stall sensing)

Robot
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Fusing multiple returns
• Crucial assumption:  pose estimation (e.g., 

odometry, dead reckoning) is accurate over
short times and distances

• Can then localize features using conventional 
triangulation (sonar beam width complicates things)

Wijk 2001

Digression: sensing uncertainty
• Time series of round-trip-time to one acoustic 

beacon for an underwater autonomous vehicle

(Olson, Leonard, Teller, Robust Range-Only Beacon 
Localization, Proc. IEEE AUV, June 2004)
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Gaussian noise model
• Measurement returns a corrupted value

St d d 

f(x) 

Gaussian or “normal” 
distribution with

standard deviation 
and variance 2

Standard 
deviation

True (but unknown) range 


(x - )

Unknown error in ranging

Outliers
• Many measurements are outliers; their frequency 

is not well-modeled by a Gaussian distribution

… what to do?
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Filtering
• Consider one-dimensional localization:

– Robot measures range r(i) at ith time step
– Ranges corrupted by Gaussian noise, outliersRanges corrupted by Gaussian noise, outliers

feature

Noisy range measurement r

xx = 0

robot

• Filter measurements; combine over time
– Deal with each measurement as it arrives
– Recursive or on-line filtering (contrast batch)

Noisy range measurement ri

Filtering with no outliers
• Suppose neither robot, feature moves

– What should our filtering strategy be?
– Call x(t) our estimate of x after t time stepsCall x(t) our estimate of x after t time steps

feature

Noisy range measurement r(i) 

xx = 0

robot

• Take mean (arithmetic average)
– x(i) = (r(1) + r(2) + … + r(i)) / i (batch)

– x(i) = [x(i-1) * (i-1) / i] + [r(i) / i]   (on-line or “recursive”)

– … if no outliers, no change over time, filter is optimal

• Computational complexity of each update?
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Dealing with outliers
• Suppose a fraction of r(i) are wildly wrong

– Classify r(i) as inliers or outliers
– How to do this?How to do this?

feature

Noisy range measurement r(i) 

xx = 0

robot

Modeling measurement noise
• Estimate sample variance as well as mean

featurerobot

Noisy range measurement r(i) 

xx = 0

• Reject unlikely samples (e.g., p < 1%)
– Filter only inliers, by averaging as before

 B t h  d  i   f ?• … But where does variance come from?
– Determine it a priori (e.g. from bench tests)
– Or, estimate it on-line, in addition to mean

• Chicken-and-egg problem (could be unlucky)
• If “outliers” become frequent, what can you do?
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Estimating variance
• Define (i) as variance after i steps
• Batch computation:

–As before, x(i) is the mean after i steps
–Then variance (i) is [(r(i)-x(i))2] / i

• Recursive (on-line) computation:
–Estimate x(i) recursively as before

Define (1) = 0; then for i > 1:–Define (1) = 0; then for i > 1:

(i) =    (i-1)/i * (i-1)
+ 1/(i-1) * (r(i) – x(i))2

Fusing data with motion

Wijk 2001
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Local vs. global data fusion

• Crucial assumption:  that robot can solve strong 
localization (global pose estimation) throughoutlocalization (global pose estimation) throughout

• This is a very difficult problem without a map!
(It’s even difficult with a map or partial map.)

• SLAM: Simultaneous Localization and Mapping
• For now, we assume localization; o/wise, need SLAM

Representation considerations
• We want our robot to be able to plan and 

execute high-level motions amongst obstacles

• What do we want from our map?
– Consistent global, or locally metrical, coordinate system
– Identification and localization of substantial features,

e.g., obstacles that may hinder or damage the robot
– All of this should be well-defined and computationally

accessible (data model, data structure, API)
S l bilit  ( bl  h   ti   – Scalability (reasonable search, access times as 
exploration continues, and map gets really large)

• … Is that all we need/want from a map?
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Alternative 1:  Discretize
• Occupancy grid of cells

– Regular subdivision of region
M d l  f  & i d – Models free & occupied space

• Cells accumulate evidence of 
presence of obstacle surface

• Grid is updated on-line with 
recent measurements

• Range return from obstacle 
implies three grid intervals:
– From robot to obstacle (FS)
– At (quantized) obstacle depth
– Beyond obstacle (from robot’s point of view)

Konolige

Many occupancy grid methods
• Example: sonar data, varying update rules

– White: free-space; black: obstacle; grey: unknown

Bor: Histogramic (Borenstein 1991); accumulates hits
Fuz: Fuzzy (Zadeh 1973; Ribo and Pinz 1999); with weights
TBF: Triangulation-Based Fusion (Wijk 2000); local triangulation
Bay: Bayesian (Elfes 1988); probabilistic occupancy/emptiness
DS:  Dempster-Shafer (Shafer 1976; Pagac 1996); with “ignorance”

Wijk 2001
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Pitfalls of occupancy grids
• Quantization error

–Cells too large:  not faithful to 
environment or robot taskenvironment or robot task

–Cells too small: too numerous 
(expensive) to process efficiently

–Task-dependent:  grid size can be 
both too small and too large!

Bl i• Blurring
–Caused by pose estimation error,

sensor uncertainty, grid quantization

Alternative 2: Line Features
• Piecewise linear approximation of 

sequence of point features (i.e., ranges)

• How are individual ranges, point features
grouped into useable line segments?

• How to counteract noise inherent in data?

Chatila
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Split, Merge, Fit algorithm
• Used for ordered sets of laser or sonar returns
• Takes two thresholds: split distance, merge angle
• Split phase:

i l li il ( ) di i i i– Recursively split until (max) distance criterion is met

• Merge phase:
– Merge adjacent segments until (min) angle criterion is met

• Fit phase (perhaps with outlier classification):
– Fit line segments to resulting (noisy) point sequences 

Split phase
• Point list: 
• Split into two subsets:

      nn yxyxyxP ,,,,,, 2211 

• : point of max distance

      mm yxyxyxP ,,,,,,' 2211 

      nnmmmm yxyxyxP ,,,,,,'' 11 

 mm yx , p
to line

 
    nn yxyxL ,,, 11
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Splitting is recursive

1. 2.

3.

Segment merging phase
• Merge adjacent segments if nearly collinear
• Failure modes?
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Storing extracted features
• Store as linear list

– Advantage: very simple.  Drawbacks: ?

• Or, store in proximity data structure
– E.g., constrained Delaunay triangulation

• CDT has many nice properties:
– Linear size; logarithmic search; temporal coherence; 

maximum minimum angle; dual to Voronoi diagram; etc.

Alternative 3: Free-space Map
• Robot spends its time well away from obstacles

freespace

• Call this area “free-space,” i.e., the region through 
which the robot can expect to be free to move

• The complement of the union of all obstacles
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Free-space complexity
• It’s empty, but that doesn’t mean its representation

is compact! What’s the descriptive complexity of FS?

Free-
space

• Free-space is more complex than obstacle union n
– 2D simple polygon (no holes): O(n) triang. space, time
– 2D segments: O(n) space, O(n lg n) triangulation time
– 3D polyhedron: O(n2) space and triangulation time

Mapping summary
• Maps are critical to many tasks
• Assumed localization for now

S  l  i• Saw several map representations,
data fusion algorithms

• Considered scaling requirements


