Rapidly-exploring Random Trees (RRTs) for Motion Planning

RSS Lecture #11

Monday, 15 March 2010

Guest Lecturer: Sertac Karaman

Today's Focus

- Retain assumptions:
 - Perfect map
 - Perfect localization

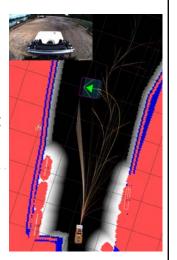
- Incorporate additional elements:
 - Unstable dynamics
 - Cars, helicopters, humanoids, ...
 - Agile maneuvering aircraft
 - High-dimensional configuration space
 - Real-time and online
 - Trajectory design & execution

Today's Focus

- Retain assumptions:
 - Perfect map
 - Perfect localization
- Incorporate additional elements:
 - Unstable dynamics
 - · Cars, helicopters, humanoids, ...
 - Agile maneuvering aircraft
 - High-dimensional configuration space
 - Real-time and online
 - Trajectory design & execution

Today's Focus

- Retain assumptions:
 - Perfect map
 - Perfect localization
- Incorporate additional elements:
 - Unstable dynamics
 - · Cars, helicopters, humanoids, ...
 - Agile maneuvering aircraft
 - High-dimensional configuration space
 - Real-time and online
 - Trajectory generation & execution



Motion Planning Revisited

- Given:
 - · Robot's dynamics
 - A map of the environment (perfect information, but discovered online)
 - · Robot's pose in the map
 - A goal pose in the map

Find a sequence of

- Actuation commands (such as steer, gas/brake, transmission)
- In real-time (requires efficient algorithms)

... that drive system to the goal pose

 Problem is essential in almost all robotics applications irrespective of size, type of actuation, sensors, application, etc.

Motion Planning Revisited

- Challenges in (most) practical applications:
 - **Safety:** do not collide with anything; ensure that system is stable; etc.
 - Computational effectiveness: problem is (provably) computationally very challenging
 - Optimize: fuel, efficiency etc.
 - Social challenges (in human-occupied environments): motion should seem natural; robot should be accepted by humans

Motion Planning Revisited

- Challenges in (most) practical applications:
 - **Safety:** do not collide with anything; ensure that system is stable; etc.
 - Computational effectiveness: problem is (provably) computationally very challenging
 - Optimize: fuel, efficiency etc.

 Social challenges (in human-occupied environments): motion should seem natural; robot should be accepted by humans

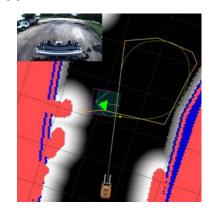
Motion Planning Revisited

- Challenges in (most) practical applications:
 - **Safety:** do not collide with anything; ensure that system is stable; etc.
 - Computational effectiveness: problem is (provably) computationally very challenging
 - Optimize: fuel, efficiency etc.

 Social challenges (in human-occupied environments): motion should seem natural; robot should be accepted by humans

Motion Planning Revisited

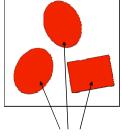
- · Challenges in (most) practical applications:
 - Safety: do not collide with anything; ensure that system is stable; etc.
 - Computational effectiveness: problem is (provably) computationally very challenging
 - Optimize: fuel, efficiency etc.



 Social challenges (in human-occupied environments): motion should seem natural; robot should be accepted by humans

Motion Planning Approaches

- Algebraic Planners
 - Explicit (algebraic) representation of obstacles
 - Use complicated algebra (several visibility computations/projections) to find the path.
 - Complete (finds a solution if one exists, otherwise reports failure)
 - Computationally very intensive impractical



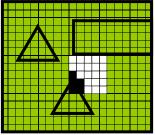
- Cell Decomposition
- Potential Fields.
- 1. Represent with polynomial inequalities
- 2. Transform inequalities to c-space
- 3. Solve inequalities in c-space to check feasibility and find a plan
- Sampling-Based Methods

Motion Planning Approaches

- Algebraic Planners
- Cell Decomposition
 - Analytic methods don't scale well with dimension (too many cells in high d)
 - Gridding methods are only "resolution complete" (i.e., will find a solution only if the grid resolution is fine enough)
- Potential Fields.
- Sampling-Based Methods



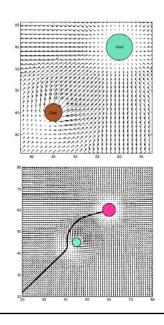
Analytic subdivision



Gridded subdivision

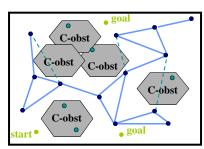
Motion Planning Approaches

- Algebraic Planners
- Cell Decomposition
- Potential Fields
 - No completeness guarantee (can get stuck in local minima)
 - Of intermediate efficiency; don't handle dynamic environments well
- Sampling-Based Methods



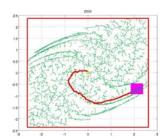
Motion Planning Approaches

- Algebraic Planners
- Cell Decomposition
- Potential Fields



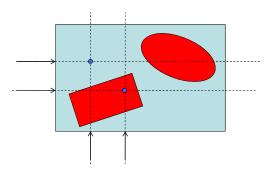
Sampling-Based Methods

- (Randomly) construct a set of feasible (that is, collision-free) trajectories
- "Probabilistically complete" (if run long enough, very likely to find a solution)
- Quite efficient; scales well with increasing dimension, # of obstacles



Sampling Strategies

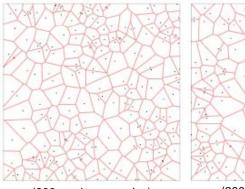
- How can we draw random samples from within c-space?
- Normalize all c-space dimensions to lie inside [0..1]
- Then, simple idea:
 - 1. Generate a random point in *d*-dimensional space
 - Independently generate d random numbers between 0 and 1
 - Aggregate all d numbers into a single c-space point
 - 2. Check whether the sample point (i.e., robot pose) lies within an obstacle

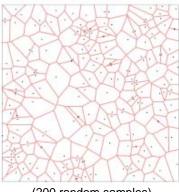


Example Sample Sets

Uniform sampling:

From a given axis, sample each coordinate with equal likelihood





(200 random samples)

(200 random samples)

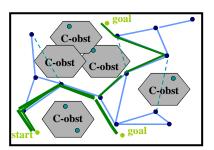
Observe:

Significant local variation, but sample sets are globally consistent (Later, we'll see that this yields consistent performance across runs)

Sampling-based Motion Planning

Basic idea:

- Randomly sample *n* points from c-space
- · Connect them to each other (if no collision with obstacles)
- · Recall the two primitive procedures:
 - · Check if a point is in the obstacle-free space
 - · Check if a trajectory lies in the obstacle-free space



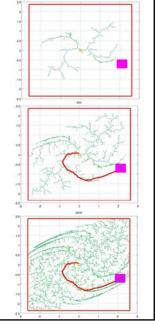
This is the Probabilistic Road Map (PRM) algorithm

PRM is a multiple-query algorithm (can reuse the roadmap for many queries)

Incremental Sampling-based

Motion Planning

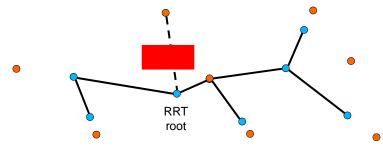
- Sometimes building a roadmap a priori might be inefficient (or even impractical)
 - Assumes that all regions of c-space will be utilized during actual motions
- · Building a roadmap requires global knowledge
 - Obstacles not known a priori, but discovered online
- · We desire an incremental method:
 - Generate motion plans for a single start, goal pose
 - · Expending more CPU yields better motion plans
- The Rapidly-exploring Random Tree (RRT) algorithm meets these requirements



RRT Data Structure, Algorithm

T = (nodes V, edges E): tree structure

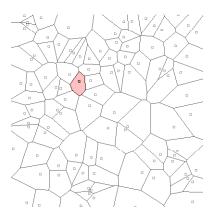
- Initialized as single root vertex (the robot's current pose)



- 1. x · Sample() // Sample a node x from c-space
- **2.** $v \in \text{Hearest}(T, x)$ // Find nearest node v in tree
- 3. $v' \leftarrow \text{Extend}(v, x)$ // Extend nearest node toward sample
- 4. If (ObstacleFree(v, v')) then // If extension is collision-free
- 5. $V \leftarrow V \cup \{v'\} E \leftarrow E \cup \{(v, v')\}$ // Add new node and edge to tree

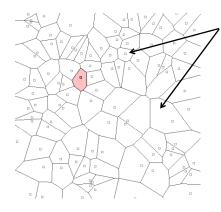
Digression: Voronoi Diagrams

Given *n* sites in *d* dimensions, the *Voronoi diagram* of the sites is a partition of \mathbb{R}^d into regions, one region per site, such that all points in the interior of each region lie closer to that region's site than to any other site



Rapidly-exploring Random Trees: Clearly random! Why rapidly-exploring?

- RRTs tend to grow toward unexplored portions of the state-space
 - · Unexplored regions are (in some sense) more likely to be sampled
 - This is called a Voronoi bias



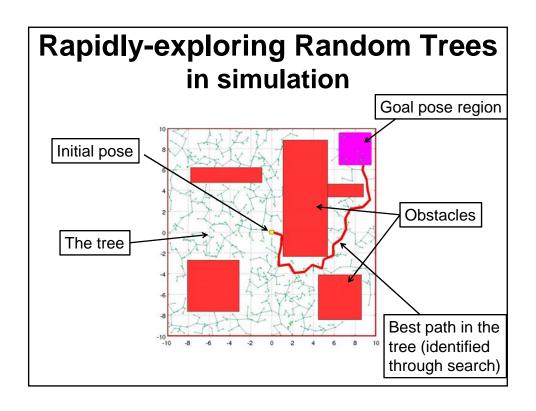
For an RRT at a given iteration, some nodes are associated with large Voronoi regions of c-space, some with smaller Voronoi regions

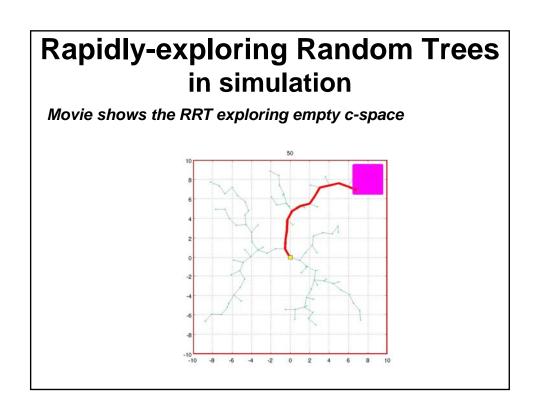
The **unexplored areas** of c-space tend to coincide with the larger Voronoi regions

(Uniform) samples will tend to fall into relatively larger Voronoi regions

Thus unexplored regions will tend to shrink!

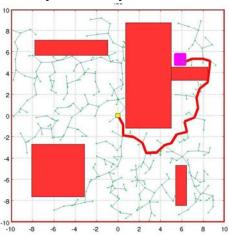
Main advantage of RRT: Samples "**grow**" tree toward unexplored regions of c-space!





Rapidly-exploring Random Trees in simulation

Let's look at initial exploration phase more carefully:



(Video rrt_with_obs_beginning)

Performance of Sampling-based Methods

• What is the "magic" behind PRMs and RRTs?

• Probabilistic Completeness:

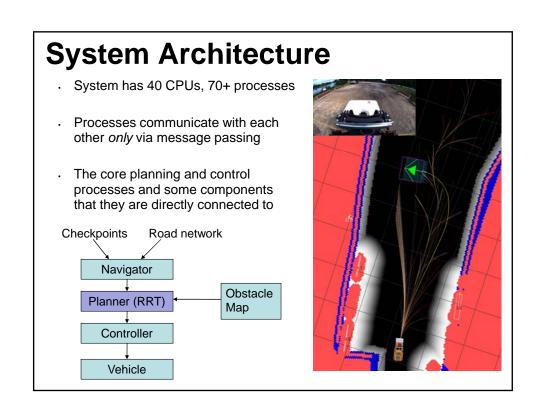
- The probability that the RRT will find a path approaches 1 as the number of samples increases — if a feasible path exists.
- If the environment has good "visibility" properties, the approach rate is exponential

c goodness

A **point** is **€-good** if it "sees" at least an **€** fraction of the obstacle-free space

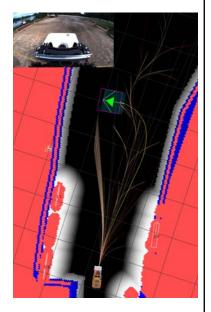
A **environment** is ϵ **-good** if all the points in it are ϵ -good

Recently, good performance of RRTs and PRMs has been tied to the fact that most practical applications feature environments with good visibility guarantees (*Latombe et al., IJRR'06*).



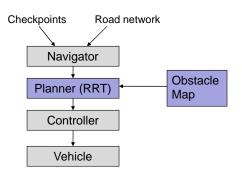
Dynamical Feasibility

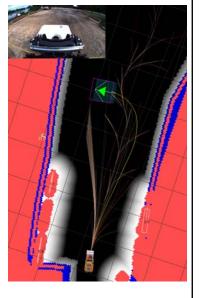
- Vehicle (car, forklift) is modeled as a dynamical system with 5 states:
 - X
 - Theta (heading)
 - Speed
 - Sideslip not used for planning
- A closed-loop controller is designed to stabilize the system in
 - Position/orientation (X, Y, Theta)
 - Speed control
- The RRT samples controller setpoints (which a lower-level controller then tracks)
- This process ensures dynamical feasibility (i.e. generates only trajectories that can indeed be executed by the vehicle)



Grid Map and Moving Obstacles

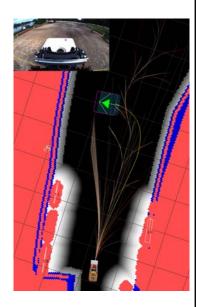
- The RRT uses the grid map data structure, which provides one efficient query:
 - Check whether a specified hypothetical trajectory collides with any (dilated) obstacle
- The perception subsystem also detects moving obstacles and predicts their future trajectories





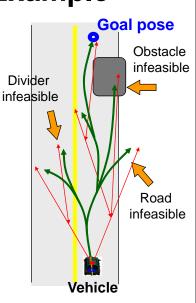
Stop Nodes

- · Remember the safety requirement.
- All leaf nodes constrained to have speed=0
- The RRT attempts to maintain a path from every internal node to some leaf node
- If, due to some newly discovered obstacle, no such trajectory exists in the tree, the robot "E-stops" (i.e., slams on the brakes)
- Safety is perhaps the most important requirement in real-time motion planning for robotic vehicles.

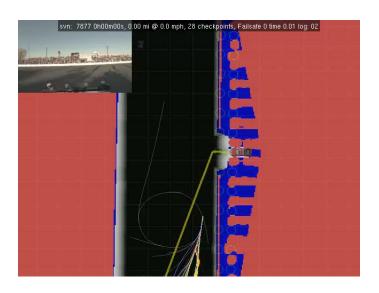


RRT - Real-World Example

- Tree of trajectories is grown by sampling configurations randomly
- Rapidly explores several configurations that the robot can reach.
 - Many test trajectories generated (tens of thousands per second)
- . Safety of any trajectory is guaranteed
 - As of instantaneous world state at the time of trajectory generation
- . Choose best one that reaches the goal, e.g.,
 - · Maximizes minimum distance to obstacles
 - Minimizes total path length
- **Supports dynamic replanning**; if current trajectory becomes infeasible:
 - Choose another one that is feasible
 - . If none remain, then E-stop



RRT at work: Urban Challenge



Summary

- Studied the Rapidly-exploring Random Tree (RRT) algorithm
- Discussed challenges for motion planning methods in real-world applications
- Discussed magic behind sampling-based methods
- Looked at two applications:
 - Urban Challenge vehicle, Agile Robotics forklift