
1

Configuration SpaceConfiguration Space
for Motion Planning

RSS Lecture 10

M d 8 M h 2010Monday, 8 March 2010

Prof. Seth Teller
Siegwart & Nourbahksh S 6.2

(Thanks to Nancy Amato, Rod Brooks, Vijay Kumar,
and Daniela Rus for some of the figures)

Last Time

• Planning for point robots
– Visibility graph method

– Intermittent obstacle contact

• Ad hoc method of handling
non-point robots
– Represent robot as a (2-DOF) disk

– Discretize Cartesian space, conservatively
(Some feasible paths not identified by search)

• Today: “configuration space” methods
– Reason directly in space with dimension = #DOFs

– Transform, solve problem, transform back

2

Today
• Configuration space

– Intuition

• Preliminaries
– Minkowski sums

– Convexity, convex hulls

• Configuration space
– Definition

– Construction

• Rigid (low-DOF) motion
– Deterministic methods

• Articulated (high-DOF) motion
– Randomized methods

Intuition
• Suppose robot can move only by translating in 2D

• How can it move in the presence of an obstacle?
• How to describe infeasible placements of robot origin?

Obstacle

How to describe infeasible placements of robot origin?

RobotRobot
origin

3

Infeasibility Under Translation

Obstacle

Robot

Robot origin

Locus of infeasible
placements of
robot origin

What if Robot can also Rotate?

Obstacle

Robot at +/6
orientation

Robot origin

4

Infeasibility under 3-DOF Motion

Obstacle

Robot at +/6
orientation

Robot origin Locus of infeasible
placements of origin
with robot at +/6
orientation

Configuration Space
For a robot with k total motion DOFs, C-space is a

coordinate system with one dimension per DOF

(Latombe 1991)

In C-space, a robot pose is simply a point!
… and a workspace obstacle is a complex shape

5

Motion Planning Transformation
Workspace

(x, y)
C-space
(x, y,)

obst

obst

obst

obst

C-obst

C-obstC-obst

C-obst

Robot

obst

x
y

Robot
Path is swept volume Path is space curve

Configuration Space Idea

Constraints
due to obstacle

geometry

Robot
geometry

Interaction
(difficult to

characterize) geometry)

Transformation to
equivalent problem
in higher dimension

Point
geometry

Transformed
constraints

Interaction
(simple to

characterize)

6

C-space Summary, Examples

C-obst

C-obstC-obst

• Define space with one dimension
per robot motion (or pose) DOF

• Map robot to a point in this space

C-obst

C-obst

Some example configuration spaces:

• C-space = all robot configurations
• C-obstacle = locus of infeasible
configurations due to obstacle

Translation +
rotation in 2D

Translation +
rotation in 3D

3-link
arm

Molecule with n
fixed-length bonds

6D C-space
(x, y, z, ψ, φ)

3D C-space
(x, y,)

3D C-space
()

2n-D C-space
(1,1, 2, 2, . . . , n, n)

rotation in 2D rotation in 3D arm

Convexity
• A set S is convex if and only if every line segment

connecting two points in S is contained within S

• Which of these
are convex?

Yes No

NoNo

7

Convex Hull of a Set of Points
• Intuition: shrink wrap or rubber band around points

Convex Hull: Formal Definitions

v = ci
. pi, ci ≥ 0, ci = 1

• Which of these are constructive / algorithmic?

8

Computing 2D Convex Hull
• Input: set S of N points (xi, yi) in 2D

• Output: polygonal boundary of convex hull of S

S Convex(S)

• How can Convex(S) be computed (efficiently)?

The Leftof Predicate
• Input: three points p, q, r
• Function Leftof (p, q, r) // argument order matters

• Output: 1 iff r is left of directed line pq otherwise -1Output: 1 iff r is left of directed line pq, otherwise 1

p
q

r How to implement Leftof()?

1. Compute sign of determinant

1 rx ry

1 p pp

2. Equivalently, find sign of z
component of (q-p) x (r-p)

1 px py

1 qx qy

p
q

r

q-p

r-p

9

Brute Force Solution
Identify point pairs that form edges of Convex(S)

I.e. for each pair p, q S, if r S – {p, q}, r lies

left of the directed line pq emit boundary edge pqleft of the directed line pq, emit boundary edge pq

Running time for input of n points? O(n2 x n) = O(n3)

Can do better: O(n2), O(n log n), O(nh), O(n log h) !

Jarvis March Algorithm
pivot = leftmost point in S; i = 0 // leftmost point must be on convex hull

repeat

H[i] = pivot // store hull vertices in output point list H[i], 0 i < h

endpoint = S[0] // check candidate hull edge [pivot endpoint]endpoint = S[0] // check candidate hull edge [pivot .. endpoint]

for j from 1 to |S|-1

if (Leftof (pivot, endpoint, S[j]))

endpoint = S[j]

pivot = endpoint; i++

until endpoint == H[0]

H[0]
H[1]

H[2]

H[h-1]
…

S[2]

Outer loop runs h times;

inner loop does O(n) work

Running time for input

set of n points? O(nh) “Output-sensitive” algorithm.

S[0] S[1]

10

Minkowski Addition
• Given two sets A,B Rd, their Minkowski sum,

denoted A B, is the set { a + b | a A, b B }
– Result of adding each element of A to each element of B

• If A & B convex, just add vertices & find convex hull:

y y y

A B

x
A

B

x x
A

B

Computation of C-obstacles
• Inputs: robot polygon R and obstacle shape S

• Output: c-space obstacle c-obstacle(S, R)

x

y

y

obstacle
robot

y

obstacle

x x

c-obstacle

11

C-obstacle Computation
1. Reflect robot R about its origin to produce R’

2. Compute Minkowski sum of R’ and obstacle S
y

y

obstacle
xR’

c obstacle

1.

2

R’

R’ R’

R’

x

y

x

robot

Sanity check: can robot origin enter c-obstacle? No.

c-obstacle2.

C-obstacles with Rotations

How do we compute this object?

12

Back to Motion Planning
• Given robot and set of obstacles:

– Compute C-space representation of obstacles

– Find path from robot start pose to goal pose (point)

• Unfortunately, we have a rather serious problem:
– We have constructed a representation of the obstacles
– But we need to search a representation of the freespace!

Computational Complexity
• The best deterministic motion planning algorithm

known requires exponential time in the C-space
dimension [Canny 1986]

• D goes up fast – already 6D for a rigid body in
3-space; articulation adds many more DOFs

• Simple obstacles have
complex C-obstacles

• Impractical to compute p p
explicit representation
of freespace for robot
with many DOFs

• What to do? Approximate and/or randomize.

13

Strategies
• Approximate: use regular subdivision of freespace

• Randomize: sample and evaluate C-space poses

• Trade away completeness for gains in efficiencyTrade away completeness for gains in efficiency

goal

C-obst

C-obst

C-obst

C-obst

start
C-obst

C obst

Example: Exact Decomposition

14

Approximate Cell Decomposition

• Advantage: recasts complex original problem as
search within space of many, simpler motion plans

Probabilistic Road Maps for Motion
Planning [Kavraki et al. 1996]

Roadmap Construction (Pre-processing)
C-space

Plan Generation (Query processing)start

goal

C-obst

C-obst

C-obst

C-obst

p (p g)

2. Connect pairs of nodes to form roadmap edges
- Use simple, deterministic local planner
- Discard invalid edges (how?)

1. Randomly generate robot configurations (nodes)
- Discard invalid nodes (how?)

C-obst

1. Link start and goal poses into roadmap

(Q y p g)start

2. Find path from start to goal within roadmap
3. Generate motion plan for each edge used

Primitives Required:
1. Method for sampling C-Space points
2. Method for “validating” C-space points and edges

15

PRMs: Pros and Cons
Advantages

1. Probabilistically complete
2. Easily applied to high-dimensional C-spaces
3 Support fast queries (w/ enough preprocessing)

C-obst

C-obstC-obst

goal

3. Support fast queries (w/ enough preprocessing)

Many success stories in which PRMs were
applied to previously intractable problemsC-obst

C-obst

start

Disadvantages

PRMs don’t work well for some problems:

goal

C-obst C-obst
PRMs don t work well for some problems:
– Unlikely to sample nodes in narrow passages
– Hard to connect nodes along constraint surfaces

start

C-obst C-obst

Sampling Around Obstacles:
OBPRM [Amato et al. 1998]

To Navigate Narrow Passages we must sample in them
Most PRM nodes lie where planning is easy, not where it’s hard

goal

C-obst

C-obst

C-obst

C-obst

PRM Roadmap
goal

C-obst

C-obst

C-obst

C-obst

OBPRM Roadmap

start start

Idea: Can we sample nodes near C-obstacle surfaces?
• We cannot explicitly construct the C-obstacles, but...
• We do have models of the (workspace) obstacles!

16

Finding Points on C-obstacles

2

3

1

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
(robot placement colliding with S)

2. Select random direction in C-space
3. Find freespace point in that direction
4. Find boundary point between points

4

y p p
using binary search (collision checks)

Note: we can use more sophisticated
approaches to try to “cover” C-obstacle

C-obst

Summary
• Introduced drastically simplifying transformation

– Based on two useful geometric constructions

• Enables use of familiar techniquesEnables use of familiar techniques…
– Discretization

– Random sampling

– Bisection

– Graph search

• … To solve high-dimensional motion planning… To solve high dimensional motion planning

• We’ll use these ideas in Lab 6

