Configuration Space for Motion Planning

RSS Lecture 10
Monday, 8 March 2010
Prof. Seth Teller
Siegwart \& Nourbahksh S 6.2

(Thanks to Nancy Amato, Rod Brooks, Vijay Kumar, and Daniela Rus for some of the figures)

Last Time

- Planning for point robots
- Visibility graph method
- Intermittent obstacle contact
- Ad hoc method of handling non-point robots
- Represent robot as a (2-DOF) disk
- Discretize Cartesian space, conservatively (Some feasible paths not identified by search)
- Today: "configuration space" methods
- Reason directly in space with dimension = \#DOFs
- Transform, solve problem, transform back

Today

- Configuration space
- Intuition
- Preliminaries
- Minkowski sums
- Convexity, convex hulls
- Configuration space
- Definition
- Construction
- Rigid (low-DOF) motion
- Deterministic methods
- Articulated (high-DOF) motion
- Randomized methods

Intuition

- Suppose robot can move only by translating in 2D
- How can it move in the presence of an obstacle?
- How to describe infeasible placements of robot origin?

What if Robot can also Rotate?

Infeasibility under 3-DOF Motion

Configuration Space

For a robot with k total motion DOFs, C-space is a coordinate system with one dimension per DOF

In C-space, a robot pose is simply
... and a workspace obstacle is a

Motion Planning Transformation Workspace
 (x, y)
 C-space
 (x, y, θ)

\triangle Robot
Path is swept volume

- Robot Path is space curve

Configuration Space Idea

C-space Summary, Examples

- Define space with one dimension per robot motion (or pose) DOF
- Map robot to a point in this space
- C-space = all robot configurations
- C-obstacle = locus of infeasible configurations due to obstacle

Some example configuration spaces:
Translation + rotation in 2D

Translation + rotation in 3D

Convexity

- A set S is convex if and only if every line segment connecting two points in S is contained within S
- Which of these are convex?

Convex Hull of a Set of Points

- Intuition: shrink wrap or rubber band around points

Convex Hull: Formal Definitions

- Which of these are constructive / algorithmic?

Computing 2D Convex Hull

- Input: set S of N points $\left(x_{i}, y_{i}\right)$ in 2D
- Output: polygonal boundary of convex hull of S

- How can Convex(S) be computed (efficiently)?

The Leftof Predicate

- Input: three points p, q, r
- Function Leftof (p, q, r) // argument order matters
- Output: 1 iff r is left of directed line $\overrightarrow{\mathrm{pq}}$, otherwise -1

How to implement Leftof()?

1. Compute sign of determinant

$$
\left|\begin{array}{lll}
1 & r_{x} & r_{y} \\
1 & p_{x} & p_{y} \\
1 & q_{x} & q_{y}
\end{array}\right|
$$

2. Equivalently, find sign of z component of

Brute Force Solution

Identify point pairs that form edges of Convex(S)
l.e. for each pair $p, q \in S$, if $\forall r \in S-\{p, q\}$, r lies left of the directed line $\overrightarrow{\mathrm{pq}}$, emit

Running time for input of n points?
Can do better: $\mathrm{O}\left(n^{2}\right), \mathrm{O}(n \log n), \mathrm{O}(n h), \mathrm{O}(n \log h)$!

Jarvis March Algorithm

pivot $=$ leftmost point in $\mathrm{S} ; \mathrm{i}=0$ // leftmost point must be on convex hull repeat
$\mathrm{H}[\mathrm{i}]=$ pivot $\quad / /$ store hull vertices in output point list $\mathrm{H}[\mathrm{i}], 0 \leq \mathrm{i}<\mathrm{h}$
endpoint $=\mathrm{S}[0]$
// check candidate hull edge [pivot .. endpoint]
for j from 1 to $|\mathrm{S}|-1$
if (Leftof (pivot, endpoint, $\mathrm{S}[\mathrm{j}])$) endpoint $=S[j]$
pivot = endpoint; i++
until endpoint $==H[0]$
Outer loop runs times; inner loop does work
 Running time for input set of n points? "Output-sensitive" algorithm.

Minkowski Addition

- Given two sets $A, B \in \mathrm{R}^{d}$, their Minkowski sum, denoted $A \oplus B$, is the set $\{a+b \mid a \in A, b \in B\}$
- Result of adding each element of A to each element of B
- If A \& B convex, just add vertices \& find convex hull:

Computation of C-obstacles

- Inputs: robot polygon R and obstacle shape S
- Output: c-space obstacle c-obstacle(S, R)

C-obstacle Computation

1. Reflect robot R about its origin to produce R^{\prime}
2. Compute Minkowski sum of R^{\prime} and obstacle S

Sanity check: can robot origin enter c-obstacle?

Back to Motion Planning

- Given robot and set of obstacles:
- Compute C-space representation of obstacles
- Find path from robot start pose to goal pose (point)

- Unfortunately, we have a rather serious problem:
- We have constructed a representation of the obstacles
- But we need to search a representation of the freespace!

Computational Complexity

- The best deterministic motion planning algorithm known requires exponential time in the C-space dimension [Canny 1986]
- D goes up fast - already 6D for a rigid body in 3-space; articulation adds many more DOFs
- Simple obstacles have complex C-obstacles
- Impractical to compute explicit representation of freespace for robot with many DOFs

- What to do?

Strategies

- Approximate: use regular subdivision of freespace
- Randomize: sample and evaluate C-space poses
- Trade away completeness for gains in

Example: Exact Decomposition

Approximate Cell Decomposition

- Advantage: recasts complex original problem as search within space of many, simpler motion plans

Probabilistic Road Maps for Motion Planning [Kavraki et al. 1996]

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes) - Discard invalid nodes (how?)
2. Connect pairs of nodes to form roadmap edges

- Use simple, deterministic local planner
- Discard invalid edges (how?)

Plan Generation (Query processing)

1. Link start and goal poses into roadmap
2. Find path from start to goal within roadmap
3. Generate motion plan for each edge used

Primitives Required:

1. Method for sampling C-Space points
2. Method for "validating" C-space points and edges

PRMs: Pros and Cons

Advantages

1. Probabilistically complete
2. Easily applied to high-dimensional C-spaces
3. Support fast queries (w/ enough preprocessing)

Many success stories in which PRMs were applied to previously intractable problems

Disadvantages

PRMs don't work well for some problems:

- Unlikely to sample nodes in narrow passages
- Hard to connect nodes along constraint surfaces

Sampling Around Obstacles: OBPRM [Amato et al. 1998]

To Navigate Narrow Passages we must sample in them
Most PRM nodes lie where planning is easy, not where it's hard

PRM Roadmap

OBPRM Roadmap

Idea: Can we sample nodes near C-obstacle surfaces?

- We cannot explicitly construct the C-obstacles, but...
- We do have models of the (workspace) obstacles!

Finding Points on C-obstacles

Note: we can use more sophisticated approaches to try to "cover" C-obstacle

Summary

- Introduced drastically simplifying transformation
- Based on two useful geometric constructions
- Enables use of familiar techniques...
- Discretization
- Random sampling
- Bisection
- Graph search
- ... To solve high-dimensional motion planning
- We'll use these ideas in Lab 6

