
1

Motion Planning

RSS Lecture 9

W d d 3 M 2010Wednesday, 3 Mar 2010

Prof. Seth Teller

Motion Planning Intuition
• How can robot move smoothly from start to goal?

?

• Are there cases in which no such motion exists?

Start

Goal

Start

Goal?

2

Bug Motion Planning Algorithm

• Simple algorithm based on four assumptions:
– Perfect knowledge of direction and distance to goal

– Ability to distinguish freespace from obstacle contacty g p

– Ability to move along an arbitrary obstacle boundary

– Ability to detect whenever a location is revisited

• Which of these assumptions are strong? Weak?

Start Goal

Bug Motion Planning Algorithm
• Repeatedly advance toward goal

• Upon encountering an obstacle:
– Circumnavigate it completely, then depart g p y, p

from point P that minimizes distance to goal

• Advantages? Drawbacks?

Goal

P

• Variants: Bug2, BugDist, BugTangent…

Start Goal

3

Complete Motion Planning

• Formal statement of motion planning problem:
– Compute a collision-free path for a rigid or articulated

moving object among static (or dynamic) obstaclesmoving object among static (or dynamic) obstacles

• Ideally we desire a “complete” motion planner:
– If a solution exists, the planner is guaranteed to return it

– Otherwise, planner indicates that no solution exists

• CMP is known to be computationally difficult
In general it requires exponential running time in the– In general it requires exponential running time in the
number of DOFs (articulation, # of obstacles etc.)

– … Even with access to perfect, global information!

Planning Under Uncertainty
• How can robot move from starting configuration

to a goal configuration despite uncertainty:
– Imperfect prior knowledge (map errors, footprint)

– Imperfect perception (sensing errors)

– Imperfect reasoning (inference errors)

– Imperfect execution (actuation errors)

– Imperfect prediction (dynamic world)

?

Start

Goal

?

4

Deliberative Architecture

Sense

Local data about state of world, robot

Plan

Global world representation

Model

Representation of desired action

Goal State

Source of goals?
– Prior knowledge

– Supplied externally

– Computed internally

Execution of desired action

Act

Modified world, robot state

Off-Line Motion Planning
• Today, we’ll make some strong assumptions:

– Perfect map of obstacles, start, goal

Perfect robot localization

Goal

– Perfect robot localization

Start

5

Motion Planning Intuition
• We want robot to stay far from obstacles

Start

Goal

… But we don’t yet have a suitable

representation of freespace to work with

Observation
• If there exists a collision-free path from start to

goal, then there exists a piecewise-linear path
involving only start, goal and obstacle vertices

Goal

Start

6

Visibility Graph Algorithm
• Construct graph G = (V, E)

– V = {obstacle vertices} υ {start, goal}

E = edges (v v) disjoint from obstacle interiors

Goal

– E = edges (vi, vj) disjoint from obstacle interiors

Start

Find Shortest Path in Graph G
• Use Dijkstra’s algorithm rooted at start vertex

Start

Goal

7

Dijkstra’s Algorithm

1 function Dijkstra (G, w, s) // Graph G, weights w, source s
2 for each vertex v in V[G] // Initialize d[], previous, S, and Q

Single-source Shortest Path

[] [], p , , Q
3 d[v] := ∞ // Vertex v is not yet reached
4 previous[v] := undefined // … so there’s no path to it yet
5 d[s] := 0 // Source reachable with zero cost
6 S := empty set // Set of vertices reached so far
7 Q := set of all vertices // Set of candidate vertices
8 while Q is not an empty set // While unreached vertices
9 u := vtx v in Q with minimum d[v] // O(n) search or Fibonacci heap
10 S S i { } // V t h d10 S := S union {u} // Vertex u reached
11 for each edge (u, v) // For each neighbor v of u
12 if d[u] + w(u,v) < d[v] // If lower-cost path to v exists via u
13 d[v] := d[u] + w(u,v) // … update cost to v
14 previous[v] := u // … and update path record

Application of Shortest-Path

Goal

Start

• What do we use as edge weights? Metric edge lengths, turning times

• Memory usage? Quadratic in # obstacle vertices

• Running time? O(|E| + |V| log |V|)

• Can we optimize by omitting reflex vertices? No.

• What major assumption have we made about the robot? It’s a point.

8

A Point Robot?
• Can’t fit much robot into a zero-area point …

– Today we’ll address robot extent via discretization

Next time we’ll see a much more elegant method– Next time we ll see a much more elegant method

?
?

?

?

Discretizing Polygonal Obstacles
• How should we discretize freespace into a grid?

– Is this just like rendering polygons in graphics?

– To avoid collisions, we must account for robot’s size!

9

Discretizing Polygonal Obstacles
• For today, assume robot is a disk with radius R

– Then for planning purposes, robot has only 2 DOFs (why?)

• Then a grid square represents freespace if:
– It does not overlap with any obstacle
– It lies further than R from all obstacle edges

• Algorithm:
– Pick a grid square that is

known to lie in freespace
– Do breadth-first search (or

“flood-fill”) from that start square
– As each square is visited by the

search, compute the minimum
di t d t b t l ddistance d to any obstacle edge

– Label square “free” if d > R;
otherwise label square “occupied”

– Once BFS is complete, label any
unlabelled squares as “occupied”

Example of a Discrete State Space
• Cartesian space
• Configuration space

• Actions take robot from
one state to another

• Objective is to find a
path from the start state to the goal state

10

Planning as Tree Search

Planning as Tree Search

....
… How can such searching be made effective and efficient?

11

Move Generation

• Which state-action pair to consider next?

• Shallowest next
– Aka: Breadth-first searchAka: Breadth first search

– Guarantees shortest path

– But: storage-intensive

• Deepest next
– Aka: Depth-first search

– Can use minimal storageCan use minimal storage

– But: no optimality guarantee

Informed Search – A*

Candidate states
reachable through
available actions

… which action
should robot take?

12

Informed Search – A*

• Use domain knowledge to bias the search

• Favor actions that might get closer to the goal

• Each state gets assigned an approximate cost• Each state gets assigned an approximate cost

f(x)= c(x) + h(x)

Cost incurred to here
from the start state

Estimated cost from
here to the goal, aka
the “heuristic” cost

 For example:
 c(x) = 3, h(x) = ||x-goal|| = sqrt(82+182) = 19.7, so f(x)=22.7

Informed Search – A*

• Each state gets assigned an approximate cost

f(x)= c(x) + h(x)

Cost incurred to here
from the start state

Estimated cost from
here to the goal, aka
the “heuristic” cost

• Choose the state with the lowest f

 Cost for another example candidate action is higher:
 c(x) = 4, h(x) = ||x-goal|| = sqrt(112+182) = 21.1, so f(x)=25.1

13

How to Construct Heuristics
• The more closely h(x) approximates the true

cost to the goal, h*(x), the more efficient the
search will be* …

BUT:

• In order for A* to find the optimal path, it must
be the case that h(x) ≤ h*(x)be the case that h(x) ≤ h (x)

• Why? Suppose this was not the case. Then
the search would discard some profitable action

• Such an h is called an “admissible” heuristic

*There is an interesting design tradeoff involved here – what is it?

A Problem with Plans
• We have a plan that

gets us from the
start to the goalg

• But… what happens if
we depart from the plan?
– We can replan, or:

– We can keep a policy

14

Potential Field Method
• Real-time collision avoidance method [Khatib 1986]
• Construct scalar potential field throughout freespace

21U

Attraction to
goal location

Repulsion from
obstacle interiors

Sum

2
1

goalatt xxU

• Robot moves along negative gradient of potential field

boundary
rep xx

U

1

Ideal Potential Field
• We want to construct the potential field so that it:

– Is nearly infinite close to obstacles
– Has a global minimum at the goal (so no local minima)

I th h– Is smooth everywhere
– Does algebraic method achieve this? No; local minima.

If only life were so easy…

15

• Initialize all states with value ∞• Initialize all states with value ∞

Numerical Potential Field

6 6 6
7 7 7

• Assign cost of 0 to goal state

• Update each state x so that
f(x) = min(f(y) + c(y, x))

(minimize over neighbors y of x)

• Repeat

• Assign cost of 0 to goal state

• Update each state x so that
f(x) = min(f(y) + c(y, x))

(minimize over neighbors y of x)

• Repeat

0
1 1 1
1
1 1 1

1
2
2

2 2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

6
6

3 3
4 4
5 5

This is called
“Regression”
from the goal

1 1 12
2 2 2 2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

6

Numbers shown are for an obstacle-induced cost
of ∞, and a goal-induced cost of 1 unit per grid cell
(can also make it costly to approach obstacles)

Post-plan: for each state move to cheapest neighbor

Example Output Value Function

16

Completeness Questions

• Recall our definition of complete MP
– Is the visibility graph algorithm complete? Yes.

Is the potential field algorithm complete? No– Is the potential field algorithm complete? No.

Recap: Design Decisions
• How is your map described? This will have an

impact on the state space for your planner
– Is it a list of polygons?
– Is it a grid map?

• What are you trying to optimize?
– The fastest path (time)?
– The shortest path (wear and tear)?
– The lowest-energy path (battery usage)?

• What kind of search should you use?• What kind of search should you use?
– Can you formulate a reasonably good heuristic?
– If so, then maybe A* is a good idea

• Physical intuition can yield useful algorithms
– Potential field method

