
1

System Engineering
and Testing Strategies

RSS Lecture 7
Wednesday, 24 February 2010

Prof. Seth Teller

My Goals Today

• Discuss system engineering from an
intellectual and practical standpointintellectual and practical standpoint

• Introduce a "toolkit" of ideas and
techniques that you can adopt in
your own engineering endeavors

• Get you thinking about your own
useful engineering practices

Caveat Auscultator (Listener beware)

• Some of this material will be new
to you; some will be familiarto you; some will be familiar
– It doesn’t hurt to hear things twice.

• Some things you will probably agree
with; some things you probably won't
–But surely you’re used to this by now.

Process View

• Engineering is a Means …
Specifying: describing what to make–Specifying: describing what to make

–Designing: describing how to make it
– Implementing: realizing actual artifact
–Validating: convincing yourself (and

others) that artifact works as specified

• … to an End
–Namely: an artifact with desired behavior

2

Human View
• Engineers are people who:

–Conceive of and execute ways to
optimize an underspecified tradeoff optimize an underspecified tradeoff
between possibly conflicting goals
(such as performance, cost, etc.) …

• … subject to physical constraints:
–Natural: Laws of physics, i.e., realityNatural: Laws of physics, i.e., reality

• … and to social constraints:
–Cultural: Law, morality, ethics …

Conception & Execution
• Conception:

–A mental model of artifact constraints–A mental model of artifact, constraints,
and assumptions about environment

• Execution:
–Putting the mental model into practice
–Observing whether it predicts behavior

under real-world conditions (and whether
environmental assumptions are justified)

Essence of Engineering …

• … Process is the (typically iterative)
–Formation of a mental model;–Formation of a mental model;
– Implementation of prototype artifact; and
–Observation of its behavior, leading to:

• Revision of designer’s operative mental model
• Revision of current design or implementation

(Or both)• (Or both)

• … Until desired behavior is achieved

Consequences of Anomalies
• If it “looks wrong” to you, two possibilities:

EITHER:

– A) Artifact behavior really is wrong, in which case:
• Artifact has deviated from your mental model
• You can find some instance of deviation, and correct it

OR:

– B) Artifact behavior is as designed, in which case:
• Your mental model made it “look wrong” to you
• Thus your mental model must be revised!y

• If things “look wrong,” it’s an opportunity to
– Improve the system’s behavior, or
– Learn something, i.e.,

improve your mental model!

3

… And if it looks correct?
• Is it correct?

• Sure, it often is correct. But that doesn’t
mean that it always is or has to be correct!

• Can boil these ideas down to an aphorism:
– “Don’t sweep anomalies under the rug.”

– In other words, anomalous behavior presents
a great opportunity to learn something!

Documentation: JavaDocs
• JavaDocs comprise:

–Declarations }–Declarations
–Comments

• Can help match mental models, but…
• … teammates’ agreement to make

} for some code corpus

tea ates ag ee e t to a e
the code implement the intent
stated in the comments essentially
amounts to a social contract

A Concrete Strategy
• Iterative Prediction, Test, Evaluation

• Not:• Not:
– “Hmm, now that I have modified this

element, let’s see what happens”

• Instead:
–Predict outcome of some well-defined testPredict outcome of some well defined test
–Perform the test
–Evaluate actual outcome; form conclusions
–Simple, systematic approach

Team Mental Models
• This strategy can be pursued by an

individual, or by an entire team

• Also useful for resolving discrepancies
in mental models within a team

• How?

• Inexhaustible source of experiments

4

Self-Checking Code
• Idea: make machine work for you

• For each algorithm/module, write
a “checker” that inspects its output
for the properties that it should have

• … same idea applies to module input!
–Postconditions (A) == Preconditions (B)

Pre/Postconditions, Invariants
• Preconditions, postconditions and invariants are commonly

used in “design-by-contract” engineering.

• Precondition - what must be true when a method is invoked.
When a precondition fails, the fault lies in the method invoker.

• Postcondition - what must be true after a method completes
successfully. Provided that the precondition was met, when a
postcondition fails, the fault lies in the method itself.

• Class Invariant - what must be true about each instance of a • Class Invariant what must be true about each instance of a
class after every method call (including construction!). When a
class invariant fails, fault could lie in the method invoker, in the
method itself, or both.

• Another common kind of invariant is internal – any condition(s)
in the implementation which we know must always hold.

Teammate-Checking Code
• Twist: for each module you write,

ask a teammate to write the checker
(ld b fi f ti i)(could be as fine as function grain)

• Multiple benefits:
–Validates your solution (as before)
–Decreases chance that checker succeeds

due to an invalid assumption (why?)due to an invalid assumption (why?)
–Facilitates agreement of your mental

model with your teammate’s model
–Exploits a natural human characteristic:

competitiveness (s/he acts as adversary)

Witnesses: “Prove it!”
• Example: linear separability (LP)

–Given point sets {Ai}, {Bi}, i in [1..N]
– Identify line L s.t. all Ai lie above L & all Bi

lie below L, or show that no such L exists

L

Witness to Success Witness to Failure

5

Caution: A Practical Issue
• Make sure your checking, reporting,

witness etc code has no side effectswitness etc. code has no side effects
that enable correct algorithm function

• Otherwise, when you disable your
self-testing code, bugs may emerge

• Examples?

Adversary
• Someone/something that tries to

–Find holes in your correctness argument–Find holes in your correctness argument
(e.g. as A did for R & S of RSA security)

–Produce inputs that break your code
(e.g., by violating your assumptions)

–Produce conditions that break system
(more than just program’s formal input)(more than just program s formal input)

• Adversary can be a person, program,
or even a designed environment

Some Adversarial Strategies
• Generate challenging inputs …

– Exhaustively
R d l– Randomly

– Qualitatively
– Deviously (e.g., provoke a teammate to do it)

• … and nominal or anomalous conditions:
– Notional environment, arranged to expectations

Mi i i i d t– Missing or mis-wired connectors
– Misbehaving sensors
– Depressed all-stop buttons
– Undefined environment variables
– Misconfigured networks, remote hosts, etc.

Self-Checking Summary

• Pit each module against itself.

• Aphorism: “Make each module
prove itself before you trust it.”

6

Test Harness
• Battery of test cases applied to a

system to validate its responsessystem to validate its responses

• We’ve seen these in “software only”
systems, with “soft-copy only” inputs

• But what about robotics? How can
we validate sensors and actuators
using only software? … We can’t!

Robotics is Different!
• Robots are subject to “hard state”

fundamentally not under s/w controlfundamentally not under s/w control
• Consider relation of proprioceptive (e.g.,

odometry, IMU) and exteroceptive (e.g.,
vision, ranging) sensor data for motion

• Actuators pose analogous problems
• Simulation can be useful*, but …
• Real world is the only way to enforce

absolute consistency of env’t, state
*Rod Brooks: “Simulation is doomed to succeed.” What does that mean?

Example
• Bot commands forward motion, but

sensed wall ahead isn’t getting closer!sensed wall ahead isn t getting closer!
• Many possible explanations:

–Motor driver is malfunctioning
–Wheels are loose (shaft is spinning)
–Robot is stuck (wheels are slipping)(pp g)
–Encoders are on the fritz (hardware)
–Encoder handler is buggy (software)
–… Something’s moving the wall away!

Robotics Test Harness
• Place robot in a known environment

 thus actions have known outcomes… thus actions have known outcomes
• For concreteness, imagine harness for:

–Odometry
–Motor drivers
–Bump sensors
–Visual servoing
–Arm driver
–Gripper sense

7

Self-Checking Summary (cont.)

• Pit system against known
i tenvironment.

• Aphorism (Feynman):
“You can’t fool Mother Nature.”

Transparency of Live State
• Make live system state graphically

visible (at least while debugging)
–Generalizes print statements (& more fun)

Benefits of State Visualization

• Exposes otherwise hidden system state
E l it hi h b d idth i l t• Exploits high-bandwidth visual system

• Speeds iterative development cycle
• Increases achievable complexity
• Useful for communicating results

(f hi d l)–To teammates (for matching models)
–To others (for demos, presentations…)

Hierarchical Testing
• Idea underlying all CS: Abstraction

... Can view any system or subsystem
 bl k b i it i das a black box, or examine its innards

• This suggests a recursive test strategy:
–Check that high-level behavior is correct
–Otherwise, examine submodules in turn:

EITHER:EITHER:

… some submodule is operating incorrectly
OR:

… submodules are correct, but something
is wrong with interconnection semantics

8

Longitudinal Testing

• Running over long time scales, spatial
excursions may expose vulnerabilities:excursions may expose vulnerabilities:
–Memory leaks, desynchronization,

insufficient buffering, drift, decalibration…

• Longer runs increase the likelihood of
encountering “good” conditions/inputs

• Course challenge requires repeated
runs of 10-15 minutes (good practice!)

Consider Pair Programming

• Treat programming as an actual
collaborative activity among peerscollaborative activity among peers

• One person types, the other person
constructively comments, questions

• Trade roles at agreed-upon intervals
• Prompts useful design discussions• Prompts useful design discussions
• Shortens design iteration dramatically
• Try it!

General Comments

• You’ve heard it all before
“Think before you code”– “Think before you code”

• My variation on this:
– “Validate as you design and implement”

• Tangible benefits in rapidity of proto-
typing & achievable complexity while
retaining confidence in correctness

Summary
• Engineering is about predictive power

• Primacy of mental models in testing
–Both individual and shared

• Importance of transparent state

• Strategies for iterative design & test

• Potential of adversarial self-checking

