
1

CARMEN
and

Some Software Development Practices for Robotics

Today’s Objectives

● Introduction to Carmen
● Introduction to programming in Carmen
● Software development and how you should

program in Carmen
● Design decisions of Carmen and why things

are they way they are
● Some basics of testing

2

What is CARMEN?

● Open-source, modular toolkit for controlling mobile robots and
sensors

● Originally primarily laser-based and map-based
● Provides end-to-end navigation capability using a core set of

replaceable modules
• Base control
• Sensor control
• Collision avoidance
• Simulation

• Localization
• Navigation
• Map building
• Multi-robot support

New set of Modules

● uorc_daemon
– Replaces uorcd
– Provides abstract interface to motors: no longer have to think in terms of

PWM or left/right wheel velocities, or think about encoder integration
● quickcam_daemon

– Provides abstract interface to camera
● robot_central

– Tags sensor data (camera, sonar, etc) with odometry positions based on
timestamps

● param_daemon
– Provides each module with configuration data to be read at startup and

during execution
● message_daemon

– Communication managed by IPC package

3

How Information Used to Flow (Labs 1-4)

VelocityController orcspy

PWM
commandsEncoder Data

uorcd

The Orc Board

Ethernet Line

Odometry Data
Odometry-stamped Images
Odometry-stamped Sonar Ranges
Odometry-stamped Bumper States

Odometry Data
Sonar Data
Bump Data

Images

Velocity commands

Velocity
commands

The Basic Flow of Information

uorc_daemon quickcam_daemon

robot_central

Motion Controller

The Orc Board

Ethernet

The QuickCam

USB Line

4

The Basic Flow of Information

param_daemon

uorc_daemon quickcam_daemon

robot_central

Odometry Data
Pose-stamped Camera Data
Pose-stamped Sonar Data
Pose-stamped Bump Data

Velocity commands

Velocity commands Odometry Data
Sonar Data
Bump Data

Camera data

Motion Controller

M M M

M

M

M

How It’s Actually Implemented

param_daemon

uorc_daemon

quickcam_daemon

robot_central Motion Controller

M

5

Sequential Programming

● How (some of) you are used to thinking
about programs:

x = getMyXPositionFromTheEncoderCounts();
y = getMyYPositionFromTheEncoderCounts();
goForward(1);
turnLeft(Math.PI/2);
Image image = camera.getImage();
double distance = computeServoDistance(image);
goForward(distance);
....

What happens if an obstacle appears while you are going forward?

What happens to the encoder data while you are turning?

What if someone else wants the data too?

Callbacks

● All execution occurs when an event happens
● e.g., an image is read from the camera,

the orc board reports odometry data
● Events are delivered in message form

(typically consisting of sensor data)
● Program control flow:

1) Connect to message_daemon
2) Declare callbacks for different messages
3) Dispatch

– As each message arrives, the callback is called, the
messages is processed, commands are issued, and
the callback ends, returning control to the message
processor

6

● Most Carmen programs will have the
following structure:

import Carmen.*;
public class MyController implements DataHandler
{

public static void main(String args[])
{

MyController controller = new MyController();
Robot.initialize();
Robot.subscribeData(controller);
Robot.dispatch();

}
}

Carmen Programs

Robot.subscribeData(controller);

● Most Carmen programs will have the
following structure:

import Carmen.*;
public class MyController implements
{

public void (msg)
{

}
public static void main(String args[])
{

MyController controller = new MyController();

}
}

DataHandler

Carmen Programs

processData();
issueCommands();

handleData DataMessage

Robot.initialize();

Robot.dispatch();

7

● For example:

import Carmen.*;
public class MyController implements CameraHandler
{

public void handleCamera(CameraMessage msg)
{

processImage();
visualServo();

}
public static void main(String args[])

{
MyController controller = new MyController();
Robot.initialize();
Robot.subscribeCameraData(controller);
Robot.dispatch();

}

Carmen Programs

The Real Big Change…

● How (some of) you are used to thinking
about programs:

x = getMyXPositionFromTheEncoderCounts();
y = getMyYPositionFromTheEncoderCounts();
goForward(1);
turnLeft(Math.PI/2);
Image image = camera.getImage();
double distance = computeServoDistance(image);
goForward(distance);
....

State 1
State 2

State 3

8

Finite State Machines

Going Forward 1m Turning Left

Going Forward dist.

Encoder Messages

Encoder
Messages

Going Forward dist.

Robot has moved
1 m

Robot has turned
π/2 radians

import Carmen.*;
public class MyController implements OdometryHandler
{

int curState = 0;
bool initialized = false;
double goalX, goalY, goalTh;

public void handleOdometry(OdometryMessage msg) {
if (!initialized) {
// initialize code
return;

}
if (curState == 0) {
// is the termination condition of state 0 true? if so, issue a command and advance to next state
return;

} else if (curState == 1) {
// is the termination condition of state 0 true? if so, issue a command and advance to next state

}
…..

}

public static void main(String args[]) {
MyController controller = new MyController();
Robot.initialize();
Robot.subscribeOdometryData(controller);
Robot.dispatch();

}
}

Finite State Machines in Carmen

9

import Carmen.*;
public class MyController implements OdometryHandler
{

int curState = 0;
bool initialized = false;
double goalX, goalY, goalTh;

public void handleOdometry(OdometryMessage msg) {
if (!initialized) {

// Assumption: Robot is facing along y-axis
goalX = msg.x; goalY = msg.y +1; goalTh = msg.Theta; initialized = true;
Robot.setVelocity(1.0, 0.0);
return;

}
if (curState == 0) {
// is the termination condition of state 0 true? if so, issue a command and advance to next state
return;

} else if (curState == 1) {
// is the termination condition of state 0 true? if so, issue a command and advance to next state

}
…..

}

public static void main(String args[]) {
MyController controller = new MyController();
Robot.initialize();
Robot.subscribeOdometryData(controller);
Robot.dispatch();

}
}

Finite State Machines in Carmen

import Carmen.*;
public class MyController implements OdometryHandler
{

int curState = 0;
bool initialized = false;
double goalX, goalY, goalTh;

public void handleOdometry(OdometryMessage msg) {
if (!initialized) {
// Assumption: Robot is facing along y-axis
goalX = msg.x; goalY = msg.y +1; goalTh = msg.Theta; initialized = true;
Robot.setVelocity(1.0, 0.0);
return;

}
if (curState == 0) {
if (Math.hypot(goalX-msg.x, goalY-msg.y) < .1) {

curState++;
Robot.setVelocity(0.0, Math.PI/8);

}
return;

} else if (curState == 1) {
// is the termination condition of state 0 true? if so, issue a command and advance to next state

}
…..

}

public static void main(String args[]) {
MyController controller = new MyController();
Robot.initialize();
Robot.subscribeOdometryData(controller);

Finite State Machines in Carmen

10

package RSS;

import Carmen.*;

public class MyMessage {
[MESSAGE FIELDS]
[MESSAGE NAME AND FORMAT]
[MESSAGE CONSTRUCTOR]
[INTERNAL MESSAGE HANDLER]
[MESSAGE SUBSCRIBE METHOD]
[MESSAGE PUBLICATION METHOD]

}

package RSS;

import Carmen.*;

public class MyMessage {
[MESSAGE FIELDS]
[MESSAGE NAME AND FORMAT]
[MESSAGE CONSTRUCTOR]
[INTERNAL MESSAGE HANDLER]
[MESSAGE SUBSCRIBE METHOD]
[MESSAGE PUBLICATION METHOD]

}

The Anatomy of a Message
• Note that messages do not

implement standard interfaces.

• By convention, you should,
however, implement a
constructor, a message
subscription method and a
publication method.

• You could also support
query/response.

• Messages do, however, require a
separate interface file to ensure
type-safe message handling

public class MyMessageHandler {

public void handleMyMessage(MyMessage message);

}

public class MyMessageHandler {

public void handleMyMessage(MyMessage message);

}

package RSS;

import Carmen.*;

public class BlobMessage {
public blobLocations[];
public int numBlobs;
public double timestamp;
public String hostname;

[MESSAGE NAME AND FORMAT]

[MESSAGE CONSTRUCTOR]

[INTERNAL MESSAGE HANDLER]

[MESSAGE SUBSCRIBE METHOD]

[MESSAGE PUBLICATION METHOD]
}

The Anatomy of a Message

• Public fields have to come
first in the message
declaration.

• Every message must have
a timestamp and hostname,
and by convention, they
must be the last two fields
in the message.

11

package RSS;

import Carmen.*;

public class BlobMessage {
public int blobLocations[];
public int numBlobs;
public double timestamp;
public String hostname;

private final static String MESSAGE_NAME = “CARMEN_BLOB_MESSAGE”;
private final static String MESSAGE_FMT = “{<int:2>,int,double,[char:10]}”;

[MESSAGE CONSTRUCTOR]

[INTERNAL MESSAGE HANDLER]

[MESSAGE SUBSCRIBE METHOD]

[MESSAGE PUBLICATION METHOD]
}

The Anatomy of a Message

• The message format string is
arcane, and easy to get wrong. Be
careful to keep your messages
simple.

• There is a formal definition in the
IPC manual linked off the wiki

package RSS;

import Carmen.*;

public class BlobMessage {
public int blobLocations[];
public int numBlobs;
public double timestamp;
public String hostname;

private final static String MESSAGE_NAME = “CARMEN_BLOB_MESSAGE”;
private final static String MESSAGE_FMT = “{<int:2>,int,double,[char:10]}”;

public BlobMessage(int blobLocations[]) {
this.blobLocations = new int[blobLocations.length];
System.arraycopy(blobLocations, 0, this.blobLocations, 0,

blobLocations.length);
this.numblobs = blobLocations.length;
this.timestamp = Util.getTime();
this.hostname = Util.getHostName();

}

[MESSAGE SUBSCRIBE METHOD]

[INTERNAL MESSAGE HANDLER]

[MESSAGE PUBLICATION METHOD]
}

The Anatomy of a Message

• Providing a constructor ensures that
the module using your message
does not have to remember to do
things like fill in field lengths, or the
timestamp and hostname.

12

package RSS;

import Carmen.*;

public class blobMessage {
public int blobLocations[];
public int numBlobs;
public double timestamp;
public String hostname;

private final static String MESSAGE_NAME = “CARMEN_BLOB_MESSAGE”;
private final static String MESSAGE_FMT = “{<int:2>,int,double,[char:10]}”;

public blobMessage(int blobLocations[]) {
this.blobLocations = new int[blobLocations.length];
System.arraycopy(blobLocations, 0, this.blobLocations, 0, blobLocations.length);
this.numblobs = blobLocations.length;
this.timestamp = Util.getTime();
this.hostname = Util.getHostName();

}

public static void subscribe(blobHandler handler)
{
IPC.defineMsg(MESSAGE_NAME, MESSAGE_FMT);
IPC.subscribeData(MESSAGE_NAME, new internalHandler(handler),

blobMessage.class);
IPC.setMsgQueueLength(MESSAGE_NAME, 1);

}

[INTERNAL MESSAGE HANLER]

[MESSAGE PUBLICATION METHOD]
}

The Anatomy of a Message

package RSS;

import Carmen.*;

public class BlobMessage {
public int blobLocations[];
public int numBlobs;
public double timestamp;
public String hostname;

private final static String MESSAGE_NAME = “CARMEN_BLOB_MESSAGE”;
private final static String MESSAGE_FMT = “{<int:2>,int,double,[char:10]}”;

public blobMessage(int blobLocations[]) {
this.blobLocations = new int[blobLocations.length];
System.arraycopy(blobLocations, 0, this.blobLocations, 0, blobLocations.length);
this.numblobs = blobLocations.length;
this.timestamp = Util.getTime();
this.hostname = Util.getHostNam();

}

public static void subscribe(blobHandler handler)
{
IPC.defineMsg(MESSAGE_NAME, MESSAGE_FMT);
IPC.subscribeData(MESSAGE_NAME, new internalHandler(handler),

blobMessage.class);
IPC.setMsgQueueLength(MESSAGE_NAME, 1);

}

private static class internalHandler implements IPC.HANDLER_TYPE {
private static MyHandler userHandler = null;
PrivateMyHandler(MessageHandler userHandler) {

this.userHandler = userHandler;
}
public void handle (IPC.MSG_INSTANCE msgInstance, Object callData) {

MyMessage message = (MyMessage)callData;
userHandler.handleMessage(message);

}
}

[MESSAGE PUBLICATION METHOD]
}

The Anatomy of a Message
• Remember you have to define a

separate interface class that
handles your message

• The internal handler ensures that
the handler that is called when a
BlobMessage is received matches
the handler type.

• Remember you have to define a
separate interface class that
handles your message

• The internal handler ensures that
the handler that is called when a
BlobMessage is received matches
the handler type.

13

package RSS;

import Carmen.*;

public class BlobMessage {
public int blobLocations[];
public int numBlobs;
public double timestamp;
public String hostname;

private final static String MESSAGE_NAME = “CARMEN_BLOB_MESSAGE”;
private final static String MESSAGE_FMT = “{<int:2>,int,double,[char:10]}”;

public blobMessage(int blobLocations[]) {
this.blobLocations = new int[blobLocations.length];
System.arraycopy(blobLocations, 0, this.blobLocations, 0, blobLocations.length);
this.numblobs = blobLocations.length;
this.timestamp = Util.getTime();
this.hostname = Util.getHostNam();

}

public static void subscribe(blobHandler handler)
{
IPC.defineMsg(MESSAGE_NAME, MESSAGE_FMT);
IPC.subscribeData(MESSAGE_NAME, new internalHandler(handler),

blobMessage.class);
IPC.setMsgQueueLength(MESSAGE_NAME, 1);

}

private static class internalHandler implements IPC.HANDLER_TYPE {
private static MyHandler userHandler = null;
PrivateMyHandler(MessageHandler userHandler) {
this.userHandler = userHandler;

}
public void handle (IPC.MSG_INSTANCE msgInstance, Object callData) {
MyMessage message = (MyMessage)callData;
userHandler.handleMessage(message);

}
}

public void publish()
{
IPC.publishData(MESSAGE_NAME, this);

}
}

The Anatomy of a Message

Things You Will Hate

● You will get message fields and message
formats wrong

● The error messages are totally meaningless.

● Carmen seems incredible arcane and hard to
use.

14

“Good Practices”

• Ease of use
• Extensibility
• Robustness

• CARMEN provides a framework for
satisfying these principles.

Standardization

● Co-ordinate frame and unit standardization
● Only 3 allowable co-ordinate frames
● All units M-K-S

● Get into the habit of using System.out.format to get C-style
printfs, and using Math.toDegrees to convert variables in
radians to degrees for reading.

● Also standardize on a range for angular measurements, and
write yourself a function to keep your angular measurements
in range.

– But not like this:
while (angle > Math.PI)
angle -= 2*Math.PI;

15

Modularity

High level tasks, e.g. giving a tour, delivering coffee,
interacting with people, etc.

Hardware management Collision detection
and communication

Navigation Localization

● Three rough groups of components
● Each component is a separate process

● Enforces separability
● Enforces robustness

• Allows distribution
of computation

Alternatives: Monoliths, Threaded
Architectures, ...
● Monolithic architecture

– Debugging can be easier in a single process
– No communication overhead
– Control flow can get very messy when different tasks with different

time constants need to be interleaved
– Everything runs on the robot: need to have the computer horsepower

onboard
– Harder to extract components when not needed (e.g., displays)

● Threaded architectures
– Control flow can become much cleaner
– No communication overhead due to shared address space
– Everything still can only run in a single place
– Debugging multi-threaded implementations seem to be much harder

than debugging multi-process implementations

16

Separation of Control and Display

● Model-View-Controller paradigm
● All data is accessible by other processes

Process 1 Process 2

Alternatives: Integrated Controller and
View

● Cannot run controller on one machine (e.g.,
laptop) and the viewer on another machine (e.g.,
Sun workstation) without using X windows (high
bandwidth)

● Any internal state of the controller that is shown in
the view may not be accessible to other programs

● May result in not being able to run controller
without display mechanism (e.g., headless
display)

17

Centralized Model

● Ensures consistency
across modules

● Programmatic
interface allows run-
time changes

Alternatives to the Centralized Model
● Distributed configurations

– Every program gets its own command-line
options, configuration file

– Easier to implement
– Separation of concerns means one process can’t

corrupt another’s model
– Extremely easy to have different processes with

inconsistent models

18

Communication Abstraction

● Anonymous publish-and-subscribe
– No module has to know a priori where any message comes from
– Requires the message_daemon to know who is subscribed to a

message and deliver the message appropriately (for n subscribers,
requires n+1 network hops per message)

– Callback mechanism provides a single point of entry for incoming
data (clearer control flow)

– Callback mechanism allows operating system to manage network
polling (more efficient)

● Carmen encourages all modules to provide interface
libraries that abstract away IPC details

– Changes to the communication protocol at any time should be
transparent to client modules

Alternative Communication Abstractions

● Point-to-point communication
– Each module knows where each message comes from and

subscribes to the source directly
– More efficient in bandwidth: eliminates the need for the ipc_daemon,

reduces the number of network hops for each message by 1
– Requires each module know where to subscribe for each message
– Prevents more efficient packet routing

● Query-response
– Most communication protocols operate like this (including orcd)
– cf. the UNIX file system
– Meshes nicely with the “sequential” mental model of programming
– Requires explicit polling, can leads to poor control flow
– Requires each module to know where to query for each message

19

Implementing Tests
public class Pose {

public double x, y, theta;

public void updateHeading(double deltaTheta) {
this.theta = this.theta+deltaTheta;

if (theta >= -Math.PI && theta < Math.PI)
return theta;

if (theta >= Math.PI)
theta -= 2*Math.PI;

if (theta < -Math.PI)
theta += 2*Math.PI;

return theta;
}

}

Implementing Tests
public class Pose {

public double x, y, theta;

public void updateHeading(double deltaTheta) {
this.theta = this.theta+deltaTheta;

if (theta >= -Math.PI && theta < Math.PI)
return theta;

if (theta >= Math.PI)
theta -= 2*Math.PI;

if (theta < -Math.PI)
theta += 2*Math.PI;

return theta;
}

public static void testUpdateHeading() {
Pose p = new Pose(Math.random()*100, Math.random()*100,

Math.random()*2*Math.PI);
double deltaTheta = Math.random()*2*Math.PI);
p.updateHeading(deltaTheta);
assert(p.theta <= Math.PI);
assert(p.theta > -Math.PI);

}
}

An external test to ensure
that theta meets our bounds.

20

Test Data and Test Cases

● Test data Inputs which have been devised to test the system
● Test cases Inputs to test the system and the predicted outputs from these inputs

if the system operates according to its specification
● Testing should be:

– Repeatable:
● If you find an error, you’ll want to repeat the test to show others
● If you correct an error, you’ll want to repeat the test to check you did fix it

– Systematic
● Random testing is not enough
● Select test sets that cover the range of behaviors of the program
● are representative of real use

– Documented
● Keep track of what tests were performed, and what the results were

Reference
Orientation Plant

Orientation

Controller

Preconditions, Postconditions and Invariants

● Preconditions/postconditions and invariants are commonly used in “design-by-contract”
engineering

● Precondition - what must be true when a method is invoked. When a precondition fails,
the method invoker has a fault.

● Postcondition - what must be true after a method completes successfully. When a
postcondition fails, the method has a fault or the precondition was not met.

● Class Invariant - what must be true about each instance of a class after construction and
after every method call. Also must true for static methods when there is no object of the
class created. When an invariant fails, a fault could exist with the method invoker or the
class itself.

● Another common kind of invariant is internal – conditions in the implementation we know
must always hold

Reference
Orientation Plant

Orientation

Controller

21

Implementing Preconditions
public class Pose {

private double x, y, theta;
/**
* Updates the heading.
*
* @param deltaTheta heading change in radians.
* @throws IllegalArgumentException if theta < -PI or
* rate >= PI.
*/
public void updateHeading(double deltaTheta) {

if (deltaTheta < -Math.PI || deltaTheta >= Math.PI)
throw new IllegalArgumentException("Invalid heading change: " + deltaTheta);

this.theta = this.theta+deltaTheta;

if (theta >= -Math.PI && theta < Math.PI)
return theta;

if (theta >= Math.PI)
theta -= 2*Math.PI;

if (theta < -Math.PI)
theta += 2*Math.PI;

assert result >= -Math.PI && result < Math.PI : this;

return theta;
}`

We have explicit enforcement
of the precondition here, but
we would also write an
external test to ensure this
precondition is being
enforced.

Implementing Preconditions
public class Pose {
private double x, y, theta;

/**
* Updates the heading.
*
* @param deltaTheta heading change in radians.
* @throws IllegalArgumentException if theta < -PI or
* rate >= PI.
*/
public void updateHeading(double deltaTheta) {
if (deltaTheta < -Math.PI || deltaTheta >= Math.PI)
throw new IllegalArgumentException("Invalid heading change: " + deltaTheta);

this.theta = this.theta+deltaTheta;

if (theta >= -Math.PI && theta < Math.PI)
return theta;

if (theta >= Math.PI)
theta -= 2*Math.PI;

if (theta < -Math.PI)
theta += 2*Math.PI;

assert result >= -Math.PI && result < Math.PI : this;

return theta;
}
public static void testUpdateHeading() {
Pose p = new Pose(Math.random()*100, Math.random()*100, Math.random()*2*Math.PI);
double deltaTheta = 4*Math.PI;
try {
p.updateHeading(deltaTheta);
assert(false);

}
catch (Exception e) { }

}
}`

The test only succeeds if an
exception is thrown before
this point.

22

Guards
● Preconditions, postconditions and many internal invariants are

properties that you can test in the method body itself. These internal
tests we call “guards”.

● We can also write external “black-box” tests to make sure the guards are
upheld

● Including postcondition and internal invariant tests in the method body is
part of a larger practice known as “defensive programming”

● Writing explicit tests for postconditions and invariants is somehow more
“intuitive”: you are checking to make sure the method worked correctly
and the postconditions and invariants hold for every method

● There is an issue here with preconditions: you want to make sure that
not only does the method accept reasonable arguments, but you want to
test for failure of violated preconditions.

● In many cases, testing involves ensuring an exception is thrown.

Implementing Postconditions
public class Pose {
private double x, y, theta;

/**
* Updates the heading.
*
* @param deltaTheta heading change in radians.
* @throws IllegalArgumentException if theta < -PI or
* rate >= PI.
*/
public void updateHeading(double deltaTheta) {
// Test precondition
if (deltaTheta < -Math.PI || deltaTheta >= Math.PI)
throw new IllegalArgumentException("Invalid heading change: " + deltaTheta);

this.theta = this.theta+deltaTheta;

if (theta >= -Math.PI && theta < Math.PI)
return theta;

if (theta >= Math.PI)
theta -= 2*Math.PI;

if (theta < -Math.PI)
theta += 2*Math.PI;

assert result >= -Math.PI && result < Math.PI : this;

return theta;
}

We have explicit enforcement
of the postcondition here, but
we would also write an
external test to ensure this
postcondition is being
enforced.

23

Class Invariants
public class Pose {
private double x, y, theta;

/**
* Updates the heading.
*
* @param deltaTheta heading change in radians.
* @throws IllegalArgumentException if theta < -PI or
* rate >= PI.
*/
public void updateHeading(double deltaTheta) {
// Test precondition
if (deltaTheta < -Math.PI || deltaTheta >= Math.PI)
throw new IllegalArgumentException("Invalid heading change: " + deltaTheta);

this.theta = this.theta+deltaTheta;

if (theta >= -Math.PI && theta < Math.PI)
return theta;

if (theta >= Math.PI)
theta -= 2*Math.PI;

if (theta < -Math.PI)
theta += 2*Math.PI;

assert theta >= -Math.PI && theta < Math.PI : this;

return theta;
}

This post-condition could be
modelled as class invariant in
other methods and the
constructor. Can we write
external tests to ensure that it
holds after all method calls?

Internal Invariants
if (i % 2 == 0) {
...

} else { // i % 2 == 1?
...

}

switch(parity) {
case Parity.EVEN:

...
break;

case Parity.ODD:
...
break;

}

void method() {
for (...) {
if (...)
return;

}
// We should never be here

}

This switch statement contains the (incorrect)
assumption that parity can have one of only two
values. To test this assumption, you should add the
following default case:

default:
assert false : parity;

24

Equivalence Partitioning

● Input data and output results often fall into different classes where all members of a class
are related

● Each of these classes is an equivalence partition where the program behaves in an
equivalent way for each class member

● Test cases should be chosen from each partition
● Example:

– If input is a 5-digit integer between 10,000 and 99,999, equivalence partitions are <10,000,
10,000-99,999 and >99,999

– Choose test cases at the boundary of these sets: 9999, 10000, 99999, 100000
– Consider adding additional cases: 50000? -1? 0? Others?

● Input partitions:
– Inputs which conform to the preconditions
– Inputs where a pre-condition does not hold
– Edge cases

● Other guidelines for preconditions
– Test software with arrays which have only a single value
– Use arrays of different sizes in different tests
– Derive tests so that the first, middle and last elements of the array are accessed
– Test with arrays of zero length

What You (Hopefully) Learned
Today
● About the Carmen modules and what they do
● About callback-based programming
● Some of the design principles underlying

Carmen, the tradeoffs we made and why
● Some good software development practices

