

Goals of RSS

- Intensive introduction to theory and practice
 Hands-on application of fundamental ideas
- · Experience with inherently interdisciplinary area
 - EE, CS, MechE, Aero/Astro: sensing, estimation, control, system architecture, implementation, validation...
 - Occasionally, students from Courses 4, 7, 8, 9, 18 ...
 - We urge you to become generalists, not specialists
- Communication
 - Verbal briefings; written reports; static & live graphics
 - Individual and team opportunities to communicate
 - Tackle real issues arising in team-based engineering
- · Open-ended design and implementation challenge
 - Explore area, collect raw materials, build structure

Structure of RSS

- Theory in lecture; practice in lab (in small teams)
 - Also demos and short "labtures" for each lab module
- Foundational material (weeks 1-9):
 - Lectures and intensive labs covering robot architectures, motor control, sensing and machine vision, navigation, motion planning, kinematics, grasping and manipulation
 - Complex system design, development and test
- Debates (weeks 11-12):
 - Students, in small teams, debate ethical issues in class
- Course challenge (weeks 1, 3, 7, 9, 10-14):
 - Introduced first day of class, revisited throughout term
 - Individual and team written design proposals
 - Design reviews (including dry runs) with course staff
 - Five weeks of team-based work, with regular checkpoints

Communication Aspects of RSS

- CI-M lectures typically on Fridays at 1pm
- Lab team wiki (brief answers, plots, videos etc.)
- Lab team briefings (to course staff)
- Lab checkpoints (in lab, rolling basis)
- Written challenge design document (individual)
- Written challenge design (team), revision
- Challenge design review (to staff), with dry runs
- Debates (in pair teams, with class)
- Challenge overview presentations (in lab, to class)
- Reflective report (individual, at end of term)

Grading• Lab quality, wikis, and briefings35%• Team challenge design and proposal10%• Challenge implementation30%• Debate performance10%• Participation in lecture and lab5%• Initial ideas and reflective report10%Team behavior, cooperation (qualitative factors)Intermediate grade summaries Week 5, Week 10

Text and Other Resources

- Textbook: Siegwart and Nourbakhsh, <u>Introduction to Autonomous Mobile Robots</u> (Intelligent Robotics and Autonomous Agents)
- Web Site: http://courses.csail.mit.edu/6.141
- Course staff:
 - Lecturers, TA, and LAs hold scheduled hours in lab
- Help after hours: email rss-help@csail.mit.edu

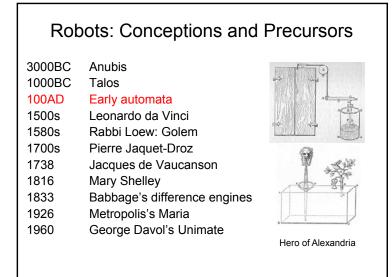
My Research Focus

- Machine situational awareness
 - Integrating experience, models of the environment, and sensor data to plan and carry out useful behaviors
- Natural interfaces involving speech, gesture
 - References to shared surroundings
- · Fielded robots for real-world utility
 - Engagement with user communities

DARPA Urban Challenge: Agile Self-driving passenger vehicle Gestu

Agile Robotics for Logistics: Voice-cor Gesture-commandable forklift autonomo

Voice-commandable autonomous wheelchair


Motivation

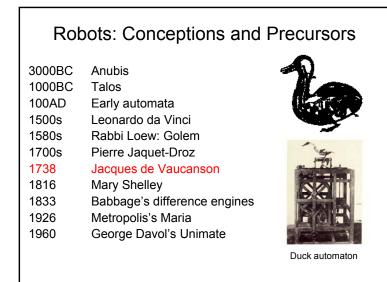
Robots: people have long sought to build them. Why? And what exactly is a robot?

Robots: Conceptions and Precursors

3000BC 100AD 1500s 1580s 1700s 1738 1816 1833 1926 1960	Anubis Talos Early automata Leonardo da Vinci Rabbi Loew: Golem Pierre Jaquet-Droz Jacques de Vaucanson Mary Shelley Babbage's difference engines Metropolis's Maria George Davol's Lipimate	Falos (ΤΑΛΩΝ)
1960	George Davol's Unimate	

Robots: Conceptions and Precursors

3000BC	Anubis
1000BC	Talos
100AD	Early automata
1500s	Leonardo da Vinci
1580s	Rabbi Loew: Golem
1700s	Pierre Jaquet-Droz
1738	Jacques de Vaucanson
1816	Mary Shelley
1833	Babbage's difference engines
1926	Metropolis's Maria
1960	George Davol's Unimate



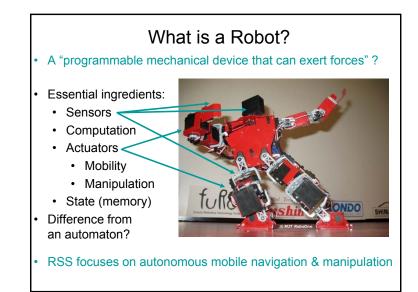
Developed mechanical principles of automata Built mechanical lion to entertain King Louis XII

Rot	oots: Conceptions and	Precursors
3000BC 1000BC 100AD 1500s 1580s 1700s 1738 1816 1833 1926 1960	Anubis Talos Early automata Leonardo da Vinci Rabbi Loew: Golem Pierre Jaquet-Droz Jacques de Vaucanson Mary Shelley Babbage's difference engines Metropolis's Maria George Davol's Unimate	رواند روان (درمان رواند روا

Robots: Conceptions and Precursors

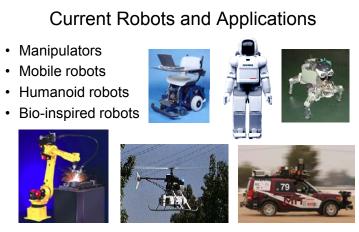
3000BC 1000BC 100AD 1500s 1580s 1700s 1738 1816 1833 1926 1960	Anubis Talos Early automata Leonardo da Vinci Rabbi Loew: Golem Pierre Jaquet-Droz Jacques de Vaucanson Mary Shelley Babbage's difference engines Metropolis's Maria George Davol's Unimate	Writing automaton
		Whiting automatom

Robots: Conceptions and Precursors

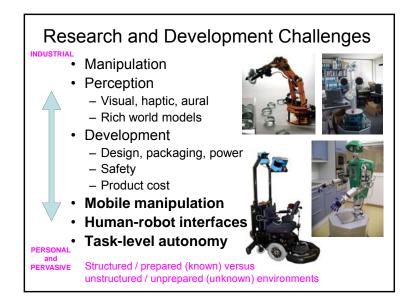

3000BC	Anubis	
	Anubis	
1000BC	Talos	
100AD	Early automata	
1500s	Leonardo da Vinci	C
1580s	Rabbi Loew: Golem	2
1700s	Pierre Jaquet-Droz	
1738	Jacques de Vaucanson	
1816	Mary Shelley	
1833	Babbage's difference engines	
1926	Metropolis's Maria	1
1960	George Davol's Unimate	ĥ
		Di

Difference engine models

Rot	oots: Conceptions	and Precursors
3000BC 1000BC 100AD 1500s 1580s 1700s 1738 1816 1833 1926 1960	Anubis Talos Early automata Leonardo da Vinci Rabbi Loew: Golem Pierre Jaquet-Droz Jacques de Vaucanson Mary Shelley Babbage's difference eng Metropolis's Maria George Davol's Unimate	Unimate (note controller!)

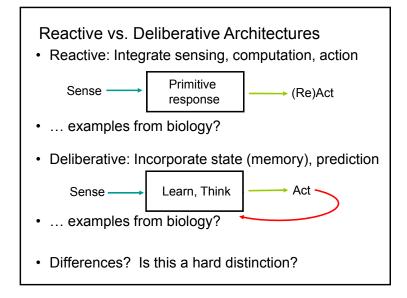


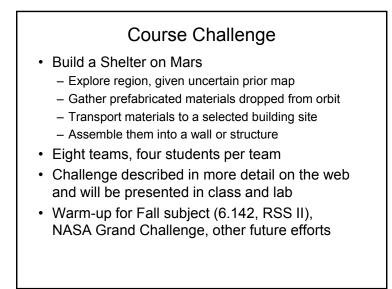
Other Workable Definitions


 A robot is a reprogrammable, multi-functional manipulator designed to move material, parts, or specialized devices though variable programmed motions for the performance of a task

(Robotics Industry Association)

- A robot is a system which exists in the physical world and autonomously senses its environment and acts in it (USC)
- An intelligent robot is a machine able to extract information from its environment and use knowledge about its world to move safely in a meaningful and purposeful manner (Typical dictionary entry)
- Robotics is the intelligent connection of perception to action (Mike Brady)




Inspection, Surveillance (Field), Transportation, Construction, Health Care, Agriculture, Manufacturing, Entertainment, ...

Why is Robotics Difficult?

- Actions in the world must be coordinated with perceptions (and models) of the world
- Physical world is continuous, dynamic, and accessible only through sensing
- Sensors and actuators are uncertain; they exhibit noise, and are subject to error
- Communication of intent often requires rich existing knowledge of the world

