Localization

RSS Lecture Monday, March 9, 2009 Prof. Teller

Text: Siegwart and Nourbakhsh Ch. 5 Dudek and Jenkin Ch. 7

Navigation Overview

- Where am I?
 - Localization (Today)
 - Assumes accurate map, but imperfect sensing
- Where have I been?
 - Mapping (Wednesday)
 - Assumes effective localization
- How can I get there from here?
 - Planning (Next M & W)
 - Assumes perfect map, sensing, and actuation

Thought experiment

- Does it make sense to localize in a void (an environment containing absolutely nothing)?
 - ... not very interesting; We conclude that there has to be some kind of "stuff" in environment
- What if the environment is *isotropic* (space, fog, water, desert, jungle etc.)?

... again, not very interesting for robot to move or perform tasks within such an environment

We conclude that environment must contain *features* that can be sensed (distinguished) by bot

Localization Problem Statement

- Given some representation of the environment, to *localize*, robot must, through sensing, determine its pose *with respect to the specified representation*
- Defined with respect to some frame or feature set that is *external* to robot:
 - Global coordinate frame
 - E.g., GPS (Earth) coordinates
 - Local coordinate frame
 - Ceiling or floor tiles
 - Mission starting pose
 - Environment features
 - E.g., nearby walls, corners, markings

Basic Localization

- Open-loop pose estimation:
 - Maintain pose estimate based on expected results of motion commands (no sensing)
- Dead reckoning:
 - Use proprioception (odometry, inertial) to estimate pose w.r.t. *initial* coordinate frame
 - Multiple error sources:
 - Wheel slip, gear backlash
 - Noise (e.g. from encoders)
 - Sensor, processor quantization errors
 - Pose error accumulates with time and motion
 - Typically ~ a few percent of distance traveled

Dead Reckoning Error

- Two hours of slow, rolling motion through MIT main campus corridors at third-floor level
 - Bosse, Leonard, Newman, Teller (IJRR 2004)
- · High-precision inertial sensors exist... do they solve problem?

Landmark Attributes

- Is landmark *passive* or *active*?
 Must sensor emit energy to sense landmark?
- Is landmark *natural* or *artificial*?
 If placed in env't, how are locations chosen?
- Which sensor(s) can detect it?
 Vision, sonar, radio, tactile, chemical, ...
- What are landmark's geometric properties? – Plane, line, segment, point, diffuse source, ...
- What is *discriminability* of landmark? – (Will discuss this in detail in a minute)

Landmark Types		
	Passive	Active
Natural	Wall corner	Sun, North star
	Texture patch	Magnetic dipole
	River bend	Pressure gradient
	Earth's surface	Mineral vent
Artificial	Surveyor's mark	Chemical marker
	Retro-reflector	Radio beacon
	Lighthouse (day)	Lighthouse (night)
	Trail blaze	LORAN
	Buoy, channel marker	GPS
	-	

- · Distance to sea surface, floor
 - Pressure (depth), bathymetry (depth, altitude)

Discriminability Challenges

- Landmark Detection
 - Is landmark distinguishable from *background*?
- Landmark Measurement, Data Fusion
 - Sensor gives a noisy, quantized measurement of landmark geometry (bearing and/or range)
 - How accurately can one measurement localize landmark?
 - How can multiple corrupted measurements be combined into one accurate landmark estimate?
- Landmark Identification
 - To which element of *representation* (i.e., map) does the detected and measured landmark correspond?
 - To which *previously-observed landmark* (if any) does currently observed landmark correspond?
 - Also known as the "data association" or "feature correspondence" or "matching" problem

Localization Degrees of Freedom

- Model robot/vehicle as a single rigid body
- Aerial, orbital, underwater navigation
 6 DOFs: three position + three orientation
- Terrestrial operation (rolling, walking)
 - 3 DOFs: two position + one orientation
 - Used for planar, mildly non-planar terrain
- Underwater surveying (high C. O. B.)
 4 DOFs: three position + one orientation

WHOI AUV, Hanu Singh (Aug. 2004

Localization Examples

- Two dimensions
 - Ideal sensors
 - -From measured *ranges* (distances)
 - -From measured *bearings* (directions)
- One dimension
 - -Real sensor (noisy measurements)
 - From range and odometry
 - -Filtering, outlier rejection
- Two dimensions
 - -Mobility with RF/acoustic beacons

- Two solutions in general, P and P'
- How to select the correct solution?

Dilution of Precision

- General phenomenon that sensor, landmark, and motion geometry can *degrade* solution quality, even for a *fixed set* of observed landmarks
- Geometric DOP = GDOP – Also Vertical DOP, Horizontal DOP etc.
- How to take GDOP into account?
 - If sufficiently many landmarks are available, *select* those with minimal GDOP
 - Decouple pose, solve separately, recombine

Robustness, Validation

- Additional measurements can be used
- Increase robustness to noise:
 - Average measurements as shown earlier
 - Require more than minimum # of landmarks
 - Drawbacks? Takes more time, or restricts space in which method works. These are fundamental tradeoffs in localization
- Enable validation w.r.t. gross error:
 - Decompose into subsets, solve independently; compare solutions
 - Predict additional landmarks from observed

Localization challenges

- Partial observability
- Measurement noise
 Amplified by GDOP
- Outlier measurements
- ... Are those all we have to worry about?

Light at bearing b_1 , Light at bearing b_2 , Light at bearing b_3

Data association problem

- General problem: determining how an observation corresponds to a map feature, or to a previously observed feature (also called *correspondence problem*)
- How to tackle?
 - Initialization and continuity
 - Identify distinguishing features among landmarks
 - Combinatorial testing / cross-validation
 - RANSAC, Random Sampling and Consensus, 1981

Localization: Summary

- Localization: from a map and its sensors, robot must determine its pose with respect to map
- Challenging problem in general, due to:
 - Partial observability
 - Data association
 - Noise & GDOP
 - Outliers
- · Strategies for robust localization
 - Geometric decoupling
 - Landmark selection
 - Initialization, continuity, combinatorial search
 - Filtering
 - On-line variance estimation, outlier rejection