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Localization

RSS Lecture
Monday, March 9, 2009

Prof. TellerProf. Teller
Text: Siegwart and Nourbakhsh Ch. 5

Dudek and Jenkin Ch. 7

Navigation Overview
• Where am I?

– Localization (Today)
– Assumes accurate map, but imperfect sensingAssumes accurate map, but imperfect sensing

• Where have I been?
– Mapping (Wednesday)
– Assumes effective localization

• How can I get there from here?
– Planning (Next M & W)Planning (Next M & W)
– Assumes perfect map, sensing, and actuation

Thought experiment
• Does it make sense to localize in a void 

(an environment containing absolutely nothing)?

… not very interesting; We conclude that there 
has to be some kind of “stuff” in environment

• What if the environment is isotropic
(space, fog, water, desert, jungle etc.)?

 again  not very interesting for robot to move … again, not very interesting for robot to move 
or perform tasks within such an environment

We conclude that environment must contain 
features that can be sensed (distinguished) by bot

Localization Problem Statement
• Given some representation of the 

environment, to localize, robot must, 
through sensing, determine its pose with 
respect to the specified representation 

• Defined with respect to some frame or
feature set that is external to robot:
– Global coordinate frame

• E g  GPS (Earth) coordinates• E.g., GPS (Earth) coordinates

– Local coordinate frame
• Ceiling or floor tiles
• Mission starting pose

– Environment features
• E.g., nearby walls, corners, markings
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Basic Localization
• Open-loop pose estimation:

– Maintain pose estimate based on expected 
results of motion commands (no sensing)

• Dead reckoning:
– Use proprioception (odometry, inertial) to 

estimate pose w.r.t. initial coordinate frame
– Multiple error sources:

• Wheel slip, gear backlash
N i  (  f  d )• Noise (e.g. from encoders)

• Sensor, processor quantization errors

– Pose error accumulates with time and motion
– Typically ~ a few percent of distance traveled

Dead Reckoning Error
• Two hours of slow, rolling motion through MIT 

main campus corridors at third-floor level
– Bosse, Leonard, Newman, Teller (IJRR 2004)

• High precision inertial sensors exist  do they solve problem?• High-precision inertial sensors exist… do they solve problem?

True path topology 
(manually overlaid)

Integrated odometry
(Nomadics B21)

(meters)

Landmark Attributes
• Is landmark passive or active?

– Must sensor emit energy to sense landmark?

• Is landmark natural or artificial?• Is landmark natural or artificial?
– If placed in env’t, how are locations chosen?

• Which sensor(s) can detect it?
– Vision, sonar, radio, tactile, chemical, …

• What are landmark’s geometric properties?
Plane  line  segment  point  diffuse source  – Plane, line, segment, point, diffuse source, …

• What is discriminability of landmark?
– (Will discuss this in detail in a minute)

Landmark Types

Wall corner
Texture patch

Sun, North star
Magnetic dipole

Passive Active

River bend
Earth’s surface

Pressure gradient
Mineral vent

Surveyor’s mark
Retro reflector

Chemical marker
Radio beacon

Natural

Retro-reflector
Lighthouse (day)
Trail blaze
Buoy, channel marker

Radio beacon
Lighthouse (night)
LORAN
GPS

Artificial
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Robot Landmark/Sensor Types
• Range to surface patch, corner

– Sonar return

• Bearing (absolute, relative, differential)

– Compass; vision (calibrated camera)

• Range to point
– RSS, TOF from RF/acoustic beacon
– Cricket (TDoA acoustic, RF)

• Range and (body-relative) bearing to object
– Radar return
– Laser range scanner return
– Vision (stereo camera rig)

• Distance to sea surface, floor
– Pressure (depth), bathymetry (depth, altitude)

Discriminability Challenges
• Landmark Detection

– Is landmark distinguishable from background?

• Landmark Measurement, Data Fusion
– Sensor gives a noisy, quantized measurement of 

landmark geometry (bearing and/or range)
– How accurately can one measurement localize landmark?
– How can multiple corrupted measurements be combined 

into one accurate landmark estimate?

• Landmark Identification
To which element of representation (i e  map) does the – To which element of representation (i.e., map) does the 
detected and measured landmark correspond?

– To which previously-observed landmark (if any) does 
currently observed landmark correspond?

– Also known as the “data association” or “feature 
correspondence” or “matching” problem

Localization Degrees of Freedom
• Model robot/vehicle as a single rigid body
• Aerial, orbital, underwater navigation

– 6 DOFs: three position + three orientation

• Terrestrial operation (rolling, walking)
– 3 DOFs: two position + one orientation
– Used for planar, mildly non-planar terrain

• Underwater surveying (high C. O. B.)
– 4 DOFs: three position + one orientationp

WHOI AUV, Hanu Singh (Aug. 2004)

Localization Examples
• Two dimensions

– Ideal sensors
–From measured ranges (distances)From measured ranges (distances)
–From measured bearings (directions)

• One dimension
–Real sensor (noisy measurements)
–From range and odometry
–Filtering, outlier rejection

• Two dimensions
–Mobility with RF/acoustic beacons



4

Triangulation
• Natural geometry for 2D localization

– Simplest framework combining range, bearing
– Used by Egyptians, Romans for engineering

P

L

L

?

L
L

LRange 

Bearing θ (relative
to straight ahead)

θ

– Features for which only some geometric
attributes can be sensed directly are called
“partially observable” features

L
L

Triangulation from ranges
• Robot at unknown position P measures 

distances d1, d2 to known landmarks L1, L2

• What are possible solutions for P?

L1

L2
d1

P
Robot measures d1, d2

?
d2

x

y

Triangulation from ranges
• Robot must lie on circles of radius 

d1, d2 centered at L1, L2 respectively

L1

d1 L2

d2

P

x

y

Triangulation from ranges
• Two solutions in general, P and P’
• How to select the correct solution?

L1
P’

?

P

L2

d1

d2
?



5

Disambiguating solutions
• A priori information (richer map)

L1

d

P’

P

L2

d1

d2

Disambiguating solutions
• Continuity (i.e., spatiotemporal information)

L1

L
d1

P’

P

L2

d2

Position 10 minutes ago
Position now

Disambiguating solutions
• Additional landmarks (redundancy)

L1

L2

d1

P’
L3

d3

P

L2

d2

Triangulation from ranges
• Are we done yet, i.e., is pose fully determined?
• No: absolute heading is not determined

P

L1

L2

d1

d

P’

• How to get heading?
– Motion (difference of positions inferred across time)
– Extent (using two ranges measured over ship baseline)

P d2

?
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Triangulation from bearings
• Body-relative bearings to two landmarks

– Bearings measured relative to “straight ahead”

Robot observes:

L2

θ2

Robot observes:
L1 at bearing θ1

L2 at bearing θ2

α
α = θ2 – θ1

“differential bearing”

L1

θ1θ1

… are two bearings enough for unique 
localization?

θ = 0 (radians) 
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L

Triangulation from two bearings

θ2

θ1

L2

L1

α

α

α

• Robot somewhere on circular arc shown
– Can it be anywhere on circle?

α

(No; ordering constraint)

Triangulation from bearings
• Measure bearing to third landmark

– Yields robot position and orientation 
– Also called robot pose (in this case, 3 DoFs)

L1
L2

L3

Measurement Uncertainty
• Ranges, bearings are typically imprecise
• Range case (estimated ranges ~d1, ~d2)

~d1

~d2

L2

L1

P
Locus of likely positions
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Measurement Uncertainty
• Two-bearing case (estimated bearings ~θ1, ~θ2)
• What is locus of recovered vehicle poses?
• Solve in closed form?  Is there an alternative?

L1
L2

Measurement Uncertainty
• Bearing case (measurements ~θ1, ~θ2, ~θ3)

L1
L2

L3
2

• … is this always a satisfactory pose bound?

{P, θ}
Locus of likely poses

Landmark, sensor geometry
• Consider off-axis and near-axis bearing 

measurements to two known landmarks
(simplification:  assume absolute heading is known)

L1

L2Near-axis case

Landmark axis

… Quality of position solution?

Off-axis case

Dilution of Precision
• General phenomenon that sensor, 

landmark, and motion geometry can 
degrade solution quality, even for a 
fi d t f b d l d kfixed set of observed landmarks

• Geometric DOP = GDOP
– Also Vertical DOP, Horizontal DOP etc.

• How to take GDOP into account?
– If sufficiently many landmarks are 

available, select those with minimal GDOP
– Decouple pose, solve separately, recombine
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Sensing uncertainty
• Time series of round-trip-time to one acoustic 

beacon for an underwater autonomous vehicle

(Olson, Leonard, Teller, Robust Range-Only Beacon 
Localization, Proc. IEEE AUV, June 2004)

Gaussian noise model
• Measurement returns a corrupted value

St d d 

f(x) 

Gaussian or “normal” 
distribution with

std. dev. σ, variance σ2

σ

Standard 
deviation

True (but unknown) range μ
μ

(x - μ)

Outliers
• Many measurements are outliers; their frequency 

is not well-modeled by a Gaussian distribution

… what to do?

Filtering
• Consider one-dimensional localization:

– Robot measures range r(i) at ith time step
– Ranges corrupted by Gaussian noise, outliersRanges corrupted by Gaussian noise, outliers

L

robot

Noisy range measurement r

xx = 0

• Filter measurements; combine over time
– Deal with each measurement as it arrives
– Recursive or on-line filtering (contrast batch)

Noisy range measurement ri
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Filtering with no outliers
• Suppose robot does not move

– What should our filtering strategy be?
– Call x(t) our estimate of x after t time stepsCall x(t) our estimate of x after t time steps

k ( h )

L

robot

Noisy range measurement r(i) 

xx = 0

• Take mean (arithmetic average)
– x(i) = (r(1) + r(2) + … + r(i)) / i     (batch)

– x(i) = [x(i-1) * (i-1) / i] + [r(i) / i]   (recursive / on-line)

– … if no outliers, no change over time, filter is optimal

• Computational complexity of each update?

Dealing with outliers
• Suppose a fraction of r(i) are wildly wrong

– Classify r(i) as inliers or outliers
– How to do this?How to do this?

L

robot

Noisy range measurement r(i) 

xx = 0

Modeling measurement noise
• Estimate sample variance as well as mean

L

robot

Noisy range measurement r(i) 

xx = 0

• Reject unlikely samples (e.g., p < 1%)
– Filter only inliers, by averaging as before

 B t h  d  i   f ?• … But where does variance come from?
– Determine it a priori (e.g. from bench tests)
– Or, estimate it on-line, in addition to mean

• Chicken-and-egg problem (could be unlucky)
• If “outliers” become frequent, what can you do?

Estimating variance
• Define σ2(i) as variance after i steps
• Batch computation:

–As before, x(i) is the mean after i steps

–Then variance σ2(i) is [Σ(r(i)-x(i))2] / i 

• Recursive (on-line) computation:
–Estimate x(i) recursively as before
–Define σ2(1) = 0; then for i > 1:

σ2(i) =    (i-1)/i * σ2(i-1)
+ 1/(i-1) * (r(i) – x(i))2
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Robustness, Validation
• Additional measurements can be used
• Increase robustness to noise:

– Average measurements as shown earlier
– Require more than minimum # of landmarks
– Drawbacks? Takes more time, or restricts 

space in which method works.  These are 
fundamental tradeoffs in localization

• Enable validation w.r.t. gross error:
D  i t  b t  l  – Decompose into subsets, solve 
independently; compare solutions

– Predict additional landmarks from observed

Localization challenges

• Partial observability
M t i• Measurement noise
– Amplified by GDOP

• Outlier measurements
• … Are those all we 

have to worry about?

Light at bearing b1,
Light at bearing b2,
Light at bearing b3

Data association problem
• General problem: determining how an 

observation corresponds to a map feature, 
or to a previously observed featureor to a previously observed feature
(also called correspondence problem)

• How to tackle?
– Initialization and continuity
– Identify distinguishing features among landmarks
– Combinatorial testing / cross-validation

• RANSAC, Random Sampling and Consensus, 1981

Localization: Summary
• Localization:  from a map and its sensors, robot 

must determine its pose with respect to map
• Challenging problem in general, due to:

– Partial observability
– Data association
– Noise & GDOP
– Outliers

• Strategies for robust localization
– Geometric decoupling
– Landmark selection
– Initialization, continuity, combinatorial search
– Filtering
– On-line variance estimation, outlier rejection


