6.141:

Robotics systems and science

Lecture 8: Control Architectures
Motion Planning

Lecture Notes Prepared by Daniela Rus
EECS/MIT
Spring 2009
Thanks to Rod Brooks, Vijay Kumar
Reading: Chapter 3, and Craig: Robotics

http://courses.csail.mit.edu/6.141/
Challenge: Build a Shelter on Mars

Last lecture block we saw

= Camera as a sensor
= Software engineering and Carmen

Today

= Robot control architectures
= Deliberative control: motion planning

= Applications: industrial assembly,
exploration, drug design

= Reading: chapter 6

Controlling in the large

= We have seen feedback control

= How do we put together multiple
feedback controllers?
= in what order?
= with what priority?

= How do we generate reliable and
correct robot behavior?

Control Architecture

= A control architecture provides a set of
principles for organizing a robot
(software) control system.

= Like in computer architecture, it
specifies building blocks

= It provides:
= structure
= constraints

Control Architecture Types

= Deliberative control

= Reactive control

= Hybrid control

= Behavior-based control

Deliberative Architecture

= Maps, lots of state
= Look-ahead

Sense——| Map, Think |[— Act

Sensors —= — Actuators

Sense
Model
Plan
Act

Reactive Architecture

= No maps, no state
= No look ahead

Sense—| I—» (Re)Act

_

Behavior-based Architecture

= Some state
= Look ahead only while acting
= Reactive + state

Explore
‘Wander Around
Sensors —> —————————— — Actuators
Avoid Obstacles

Avoid Collision

Hybrid architectures

= State
= Look ahead but react
= Combines long and short time scales

Criteria For Selection

Motion Planning

deliberative reactive behavior

Task and

environment

Run-time
constraints

Correctness/
Completeness

Hardware

How do we command the robot to move
from A to B despite complications?

Complications: error in maps, sensing,
control, unexpected obstacles, etc.

Spatial Planning:
Shakey and Stanford Cart (1969)

TV camera
Triangulating range finger 15 mins processing for video
Bump sensors planning per meter of travel

DEC PDP-10, PDP-15 via radio
(192K 36-bit)

Deliberative Architecture

Last Week

| _Lommiegabout the world
» Next Week
>

= | CLsemture pf the world

Today and later

e0int controllers/drivers
cities, joint torques

Motion Planning

subgoals

Trajectory Generator

smooth trajectory

Calibration

Localization

Controller

Signals to joint controllers/drivers

IRobot motors, sensors|
+ External world

Trajectory generation from
waypoints

Different interpolations
Depending on robot constraints

Motion Planning

Online Motion Planning

= Known =Unknown Environments
Environments No Model
(Model) ()
OFFLINE ONLINE
ALGORITHMS ALGORITHMS

Example: how do we find a bridge in the fog?

Always finds a path
(if it exists)

Off-line Motion Planning

. Goal
@

@

Start .

Visibility Graphs

q,m",“t:;: x ;
Vertices: Start, Goal, \

A

_—
(.

§~ .
Ag!am—» o

S

obstacle vertices

Edges: all combinations (v;, v;) that do not intersect any obstacle

Search Path: Dijkstra’s Algorithm

1 function Dijkstra(G, w, s)

for each vertex v in V[G] /I Initializations
d[v] := infinity
previous[v] := undefined

d[s] =0

S := empty set

Q := set of all vertices

while Q is not an empty set /I The algorithm itself
u := Extract_Min(Q) 11 O(n) for linked lists; Fib. Heaps?
S := S union {u}

" for each edge (u,v) outgoing from u

12 if d[v] > d[u] + w(u,v) /I Relax (u,v)

13 d[v] := d[u] + w(u,v)

14 previous[v] := u

SO®NO G R WN

Visibility Graphs Summary

—
(1
LAVSE

S A (A i
P .~'

—+
A"‘"}/
For what robot shapes does this work?

What if the robot is not a
point?

Configuration space

obstacle free

~
S
S

%

Robot

obstacle free

C-space : (x, Y, 6) DOF

Configuration space

obstacle free invalid
606‘
& ohfiguration
space = the set
of all feasible
configurations

Robot

3-D space for
planar, mobile
robots

obstacle free

C-space : (x,Y, 6) DOF

invalid

Transforming to C-Space

Shape Spatial 3 Shape
interaction

Transform to
equivalent simpler

problem Higher
dimension
| < Spatial o)
Point Interaction " Shape

Simpler problem

Robot Configuration Space

Transforming to C-Space

oal
)

J
]

1
@ gga

start start
e

Allowable Robot positions
(no rotations)

Allowable Robot positions
(no rotations)

KobpT

Allowable Robot positions
(for some robot rotation)

C-space Algorithm

Step 1: Reflect Robot

C-space Algorithm

NS

Step 2: Vert (©ORobot) ®Vert (Obstacle)

C-space Algorithm

Step 3: ConvexHull (Vert (- Robot) + Vert (Obstacle))

Convex Hull Algorithm

Convex Hull Algorithm

Convex Hull Algorithm

Algorithm Summary
= Compute c-space for each obstacle
= Compute v-graph
= Find path from start to goal

S

=4

V-graph complete; gives optimal shortest path in 2d
What about 3d? What else can we optimize?

Configuration Space with Rotations

«

Piano Movers’ Problem

* 3D Robots |

3 DOF Motion

10

