6.141:

Robotics systems and science Lecture 8: Control Architectures Motion Planning

Lecture Notes Prepared by Daniela Rus EECS/MIT Spring 2009

Thanks to Rod Brooks, Vijay Kumar Reading: Chapter 3, and Craig: Robotics

http://courses.csail.mit.edu/6.141/ Challenge: Build a Shelter on Mars

Last lecture block we saw

- Camera as a sensor
- Software engineering and Carmen

Today

- Robot control architectures
- Deliberative control: motion planning
- Applications: industrial assembly, exploration, drug design
- Reading: chapter 6

Controlling in the large

- We have seen feedback control
- How do we put together multiple feedback controllers?
 - in what order?
 - with what priority?
- How do we generate reliable and correct robot behavior?

Control Architecture

- A control architecture provides a set of principles for organizing a robot (software) control system.
- Like in computer architecture, it specifies building blocks
- It provides:
 - structure
 - constraints

Control Architecture Types

- Deliberative control
- Reactive control
- Hybrid control
- Behavior-based control

Deliberative Architecture ■ Maps, lots of state ■ Look-ahead Sense Map, Think Act Sensors Actuators

Behavior-based Architecture

- Some state
- Look ahead only while acting
- Reactive + state

Hybrid architectures

- State
- Look ahead but react
- Combines long and short time scales

Criteria For Selection

	deliberative	reactive	behavior
Task and			
environment			
Run-time constraints			
Correctness/ Completeness			
Hardware			

Motion Planning

How do we command the robot to move from A to B despite complications?

Complications: error in maps, sensing, control, unexpected obstacles, etc.

