Locomotion Summary

<table>
<thead>
<tr>
<th>Locomotion Type</th>
<th>Motors</th>
<th>Pro</th>
<th>Con</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous drive</td>
<td>2, one to translate, one to rotate</td>
<td>Simple control</td>
<td>Wheel alignment</td>
</tr>
<tr>
<td>Differential drive</td>
<td>2, 1 per wheel</td>
<td>Simple</td>
<td>Control</td>
</tr>
<tr>
<td>Car-type drive</td>
<td>2, one to translate, one to rotate</td>
<td>Control</td>
<td>Planning</td>
</tr>
<tr>
<td>Dual differential drive</td>
<td>2, one to drive translation and one for rotation</td>
<td>Translation guaranteed mechanically</td>
<td>Gear complexity</td>
</tr>
</tbody>
</table>

Wheeled Legs: Octobot (ETH)

Today: Sensors and Perception
Outline

- What are sensors?
- Types of sensors (many examples)
- Sensor details
- Examples

What are sensors

- Sensors constitute the perceptual system of a robot
- Sensors are physical devices that measure physical quantities
- Sensors do not provide *state*
- Examples:
 - contact -> switch
 - distance -> ultrasound, radar, infra red
 - magnetic field -> compass

Examples of Sensors

- More examples:
 - light level -> photo cells, cameras
 - sound level -> microphones
 - strain -> strain gauges
 - rotation -> encoders, switch
 - temperature -> thermometer
 - gravity -> inclinometers
 - acceleration -> accelerometers
 - acceleration -> rate gyroscopes
 - flames -> UV detector

Sensor Types

- Based on energy emission:
 - Passive: received energy only
 - Active: emitted energy

- Based on data source:
 - *Proprioceptive*: sensing internal properties
 - *Exteroceptive*: sensing external properties
Sensor Types

Based on energy emission:
- Passive: received energy only (e.g., human vision, hearing)
- Active: emitted energy (e.g., sonar, ladar, structured lighting, human touch)

Based on data source:
- Proprioceptive: sensing internal properties (e.g., battery level, wheel encoders)
- Exteroceptive: sensing external properties (e.g., vision, ranging)

Signal to Symbol

- Sensors provide signals
 - The bumper switch is depressed
 - Acting requires state
 - Stop if we have collided with something
- Reconstruction:
 - “Given the sensory reading I am getting, what must the world be like to make the sensor give me this reading?”

Levels of Processing

- Determine position of switch from voltage in circuit => electronics
- Using a microphone, separate voice from noise => signal processing
- Using a camera, find people in the image and recognize “persons of interest” => computation

Perception system design

- Consider perception in context:
 - The task the robot has to perform
 - The environment it inhabits
 - The best sensors for that task
 - The best placement of sensors
 - The best way to use a sensor
- Minimalist approach:
 - Determine sufficient state
Example: Detecting People

- temperature: pyro-electric sensors detect special temperature ranges
- movement: if everything else is static or slower/faster
- color: if people wear uniquely colored clothing in your environment
- shape: now you need to do complex vision processing

Example: Measuring Distance

- Ultrasound sensors (sonar) give distance directly (time of flight)
- Infra red provides return signal intensity
- Two cameras (i.e., stereo) can give you distance/depth
- Use perspective projection with 1 camera
- Use structured light; overlying grid patterns on the world

Example: Detecting People

- Ultrasound sensors (sonar) give distance directly (time of flight)
- Infra red provides return signal intensity
- Two cameras (i.e., stereo) can give you distance/depth
- Use perspective projection with 1 camera
- Use structured light; overlying grid patterns on the world

Analog and Digital Signals

- Sensors may output signals in different formats:
 - Analog level (voltage or resistance)
 - Analog waveform
 - Digital level
 - Digital waveform
- Modern computers require digital inputs
Analog to Digital Conversion

- Analog-to-digital conversion requires specialized circuit (ADC)
- Most circuits based on analog comparators

Simple Analog Sensors: Photocells for Light

- Passive sensors for measuring light intensity
- Two technologies:
 - Photoresistor: light-dependent resistor
 - Photodiode: light-dependent diode
- Photoresistor:
 - increasing light => decreasing resistance
- Photodiode (forward bias):
 - increasing light => increasing current

Sampling Rates and Resolution

- Analog waveforms are time-varying signals
- ADC will sample at some fixed frequency (x axis)
- ADC will sample at some fixed resolution (y axis)
- Nyquist criterion: sample at 2 * max frequency

Photocell Circuits

- Light sensors vary current/resistance
- ADC measures voltage
- Sensor must be placed in circuit
- Ohm’s Law: \(V = IR \)
Photocell Uses

- Light sensors can measure:
 - Ambient light intensity
 - Differential intensity (two detectors)
- Light sensors should be:
 - Shielded
 - Focused
 - Oriented

Detecting Position

Potentiometer Circuit

- Pots vary resistance
- Attach wire to A; no voltage drop
- Attach wire to B: big voltage drop
- ADC measures voltage and is converted to digital value
- Uses?
 - Joint angle
 - Shaft angle
 - Linear travel

Detecting Objects
Simple Digital Sensors: Switches for Contact

- Simplest sensor: 1-bit digital
- Minimal circuitry, processing
 - De-bounce hardware or software
- Normally open (NO):
 - Current flows when switch is pressed
- Normally closed (NC):
 - Current flows when switch is released
- Many types:
 - Press, toggle, rocker, knife
 - Reed, mercury

- Contact
 - Trigger on contact with object
- Limit
 - Trigger when joints are at end of range
 - Shaft encoder
 - Count revolutions of shaft (reed)
- Orientation
 - Detect if robot is tipped over (mercury)

Skin: Electric-conductive fabric

Skin Sensor

- Position of the top of the sensor gives an estimation of the force applied
- Magnetic:
 - A magnet on the dome, 4 hall effect sensors on the base
- Optical version
 - A LED and 4 photo receptors on the base

Skin

- 6 tactile sensors on the fingers and thumb
- A tactile sensor has 4 domes with 4 hall effect sensors in each dome
- Palm: 16 domes, each with 4 hall effect sensors
Simple Sensors:
IR for Object Detection
- Optosensors have emitter detector pair in same package
- Reflective and break-beam configurations
- Digital and analog versions

Optosensor Uses
- Reflectance
 - Object proximity
 - Feature detection (e.g., retro reflector)
 - Bar-code reading
 - Shaft encoding
- Break-beam
 - Object presence (e.g., gripper)

Measuring Distance
How do we get distance from the measured time-of-flight?
Sound/light travels at a constant speed, which varies slightly based on ambient temperature
At room temperature, sound travels at 331 m/sec, or around 30 cm/msec

Ultrasound
- Ultrasound range sensing is based on the time-of-flight principle
- The emitter produces a "chirp" of sound (at very high frequency)
- Sound travels away from emitter, bounces off barrier, returns to detector
- The time elapsed is measured
Sonar sensor construction

- Some sensors have single emitter/detector pair
- Other sensors have common emitter/detector

Angular Resolution

- Typical sensors have 30 degree angular resolution
- Diffraction limited: wavelength is comparable to emitter size
- E.g., Polaroid transducer:
 - Frequency 50kHz
 - Wavelength 7mm
 - Sensor diameter ~ 40mm
 - Max range ~ 10m

Limitations?
How do we overcome them?

Laser range finders (ladar)

- Sonar sensors measure range using time-of-flight of sound
 - Sound: 330 m/sec in air
- Laser range finders measure time-of-flight of light
 - Light: 300,000,000 m/sec in vacuum

Scanning laser range-finders

- Scanning laser range-finder:
 - Laser range finder
 - Rotating mirror(s)
- E.g., SICK
 - 3D planar scan, 180 degree FOV
- E.g., Riegl
 - 3D volume scan, 360/80 degree FOV
Scanning laser range-finders

- Scanning laser range-finder:
 - Laser range finder
 - Rotating mirror(s)
- E.g., SICK
 - 3D planar scan, 180 deg FOV
- E.g., Riegl
 - 3D volume scan, 360/80 degree FOV

Fizeau Experiment
315,000 km/s

Michelson Experiment
299,796 km/s +/- 4
Same principle used to measure distance
Given speed of light

Imaging Sensors

- Cameras
 - Color, texture give clues about road edges, plant and rock locations
- Stereo/LADAR
 - Provide snapshot of 3-D terrain geometry ahead of vehicle

LADAR
> Laser Detection And Ranging
> How it works
LADAR

LMS 291-S05 2D LADAR Scanner; Cost: $3,014

Data Specifications
- Data Interface: RS 232 / RS 422 (configurable)
- Transfer Rate: 9.6 / 19.2 / 38.4 / 500 kbd

Sensing Specifications
- Scanning Speed: 75 Hz
- Angular View: 100°, 180°
- Angular Resolution: 0.25° / 0.50° / 1.00°
- Measurement Resolution: 10 mm

Physical Specifications
- Weight: approx. 19.8 lb
- Environment: Outdoor (Fog Correction)

Electrical Specifications
- Supply Voltage: 24 V DC ± 15%

One-sweep Data

One-scan Data
Several-scan Data

Laser Processing

Ladar versus sonar

- Pros:
 - Small spot size (good angular resolution)
 - High sample rate
 - Short wavelength (fewer specular reflections)

- Cons:
 - Large/heavy
 - Complex/expensive

MIT Vehicle: Talos (Land Rover LR3)

- Approach: Perception-based navigation and planning
- Power: 6 kW gas-fueled generator
- Computation: blade cluster (40 processing cores)
- Sensing: 13 lidars, 15 radars, 5 cameras
- Planning and control: rapidly-exploring random tree (RRT), pure-pursuit
- Software: powerful new UDP messaging, visualization architecture
Detecting Location

Position Sensors

- GPS (global positioning system)
 - May provide sub-meter resolution, but can be blocked by urban landscape
- Vehicle attitude
 - Gyroscopes, accelerometers (IMUs) can be used to get/update compass heading, pitch, roll of vehicle