Actuation:
DC Motors; Torque and Gearing;
Encoders; Motor Control

RSS Lecture 3
Wednesday, 11 Feb 2009
Prof. Seth Teller

Today

• Three types of DC motors
 – Permanent magnet; servo; stepper (if time)
• Torque, efficiency and gearing
 – Motor “sizing” and safety
• Electronic motor control
 – Power, driver and microprocessor control
• Motor shaft “position” (angle) sensing
 – Potentiometers, optical encoders

Early DC Motors

• Orsted (1819): DC current produces a B field
• Faraday motor (1821)
 – Magnet; bowl of mercury; stiff wire attached at top
 – Run DC current through wire; it rotates about magnet
• Effect came to be known as “Lorentz force”
 – Induced force perpendicular to current direction, B field

Administrative Notes

• Friday 1pm: Communications lecture
 – Discuss: writing up your ideas for an architecture to solve final course challenge
• Monday 16 February (Presidents Day)
 – MIT Holiday; No Lecture, No Lab
• Tuesday 17 February (Virtual Monday)
 – MIT on Monday schedule; Lecture, Lab as usual
After some engineering refinement …

- Wind wire coil around armature to strengthen B field
- Mount armature on rotor; attach rotor to drive shaft
- Enclose rotor and drive shaft within stator
 - Permanent magnet or electromagnet
- Supply DC voltage and current as shown below

How does the motor keep spinning?

- Commutator (copper) and brushes (not shown)
- Blue coil is the one in contact with + terminal

Motor Power, Torque, and Efficiency

\[P_e = V \cdot I \]

\[P_m = T \cdot \omega \]

\[T = F \cdot r \] is the torque; it is the tangential force \(F \) delivered at a distance \(r \) from shaft center [N m]

\(\omega \) : Angular velocity of shaft [radians / sec]

Efficiency \(e = \frac{P_m}{P_e} \)

RPM vs. Torque

- When a conductor moves within a magnetic field:
 - Current produced in conductor
 - Current is called “back-EMF”
 - Back-EMF is proportional to shaft angular velocity, and opposes current supplied by PS
 - Thus as shaft (armature) RPM increases, permanent magnet-induced current increases
 - Thus supplied current from PS decreases
 - Thus as RPM increases, torque decreases!
Pittman GM9236S025 DC Motor (12VDC)

“Speed-Torque Characteristic”

What does this plot mean?

How can we interpret it?

![Graph showing Speed vs. Torque and Current vs. Torque for a Pittman GM9236S025 DC Motor.](graph1.png)

Load vs. RPM, Power, and Torque

- **Increase load on the shaft**
 - RPM drops (direction on plot?)
 - Rotation-induced voltage across armature (opposing PS) decreases
 - Thus (since $V=IR$) more current will flow from the power supply
 - Thus more torque will be produced

- **Decrease load on the shaft**
 - RPM goes up (direction on plot?)
 - Rotation-induced voltage across armature (opposing PS) increases
 - Thus (since $V=IR$) less current will flow from the power supply
 - Thus less torque will be produced

- **What if you apply fixed voltage V?** Equilibrium “no-load” state.

![Graph showing Speed vs. Current for various loads.](graph2.png)

Pittman GM9236S025 DC Motor

“Power-Torque Characteristic”

What info is in this plot?

![Graph showing Power vs. Torque and Efficiency vs. Torque for a Pittman GM9236S025 DC Motor.](graph3.png)

Motor operating regimes

- **Continuous torque (480 oz. in. for Pittman motor)**
 - Torque that won’t overheat the motor

- **Peak torque (2585 oz. in. for Pittman motor)**
 - Momentary, intermittent or acceleration torque
 - Torque maximized at **stall** (immobilized shaft)

- **Peak output power ($T \cdot \omega$)**
 - Calls for much more than continuous torque level

- **Peak efficiency**
 - Maximum battery duration
 - But only ~10% of peak torque!
Gearing Down

- Gearbox:
 - Transmits power mechanically
 - Transforms shaft angular velocity \(\omega \) and torque \(T \) (how?)

- Gear ratio
 \[R = \frac{\# \text{ teeth}_\text{out}}{\# \text{ teeth}_\text{in}} \]
 - So \(\omega_{\text{out}} = \omega_{\text{in}} / R \)
 - \(T_{\text{out}} = e (T_{\text{in}} \cdot R) \)

- What is \(e \)?
 - Gearbox efficiency, \(0 < e < 1 \)

Interfacing Motor and Microprocessor

- So far, we’ve looked only at constant 12VDC
- In reality, must control motor direction and speed
- Two issues:
 - 1. PSOC alone can’t provide sufficient current
 - 2. How do we control the motor speed?
Interfacing Motor and Microprocessor

- Combine **separate power source** with control signals from microprocessor using some interface circuitry:

 ![H-bridge diagram](image)

 - This circuit is called an *H-bridge*.
 - In ORCboard, it's in an **L6205 DUAL FULL BRIDGE DRIVER**
 - Direction of motor is determined by corner-paired switch that determines direction of potential and thus current flow

H-Bridge Circuit States

- **Open**
 - No voltage applied across motor M

- **Forward**
 - V_{in} applied

- **Reverse**
 - V_{in} applied

PWM: Pulse Width Modulation

- Apply motor voltage as *square wave* at *fixed frequency* (from 60Hz to 50KHz; Orc uses ~16KHz)
- Control motor speed/power by changing the *duty cycle* (or *pulse width*) of voltage signal
 - At 0% duty cycle, motor is off
 - At 100%, full power
 - At 50%, half power etc.
- Effectively produces a *time-averaged* voltage signal
- Inductive load of motor smoothes input signal in coils
- ... But how do we know at what value to set the pulse width?

Shaft Encoders

- Report motor shaft speed (easy) or position (harder)
- Codewheel: Circular disk mounted on motor shaft with many alternating black and white regions
- Optical sensor reads / emits codewheel region transitions
- Counting the pulses produced in any time interval yields *change* in shaft angle (how to compute distance traveled?)
- This is basic *odometry* used for control & “dead reckoning,” or estimation of position relative to some starting point

Clark and Owings

Wikipedia

Agilent
Servomechanisms (servo motors, servos)

- DC motor in an integrated package with 3 extra elements:
 - Gearbox between motor shaft and output shaft
 - Provides low-speed, high-torque output
 - Feedback-based position control circuit (pulse-width control)
 - Drives servo to commanded "position" (shaft angle)
 - Shaft angle sensing (potentiometer)
 - Current sense for torque sensing
 - Limit stops on output shaft
 - These mechanically delimit servo’s minimum & maximum “position”

Stepper Motor (Example: 90-degree bipolar)

- Stator: even N coils arrayed around rotor symmetry axis (out of plane of page)
 - Controller does commutation: Energizes coils in rotational sequence; rotor swings into alignment to successive states
 - When the coil is kept energized, motor produces “holding torque”

- Rotor: permanent magnet(s) mounted on output drive shaft
 - Adv: holding torque, speed and position control without using encoders or feedback
 - Angular resolutions of < 1deg are available!
 - Brushless!

Comparison of Motor Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Pluses:</th>
<th>Minuses:</th>
<th>Best For:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Motor</td>
<td>Common Wide variety of sizes Most powerful Easy to interface Must for large robots</td>
<td>Too fast (needs gearbox) High current (usually) Expensive PWM is complex</td>
<td>Large robots</td>
</tr>
<tr>
<td>Hobby Servo</td>
<td>All in one package Variety; cheap; easy to mount and interface Medium power required</td>
<td>Low weight capability Little speed control</td>
<td>Small, legged robots</td>
</tr>
<tr>
<td>Stepper Motor</td>
<td>Precise speed control Great variety Good indoor robot speed Cheap, easy to interface</td>
<td>Heavy for output power High current Bulky / harder to mount Low weight capability, low power Complex to control</td>
<td>Line followers, maze solvers</td>
</tr>
</tbody>
</table>

Supplementary Reading

- Theoretical
 - Foundations of Electric Power, J.R. Cogdell
 - Electric Motors and their Controls: An Introduction, Tak Kenjo

- Practical
 - Building Robot Drive Trains, D. Clark and M. Owings
 - Mobile Robots: Inspiration to Implementation, J.L. Jones, B. Seiger, A.M. Flynn