
1

6.141:
Robotics systems and science
Lecture 12: Implementing Motion Planning

Lecture Notes Prepared by Daniela Rus
EECS/MIT

Spring 2009
Based on Slides by Nick Roy

Reading: Chapter 3, and Craig: Robotics

 http://courses.csail.mit.edu/6.141/

Challenge: Build a Shelter on Mars

Today’s Objectives

  Planning and search
  Search methods

  Plans vs. Policies
  Numerical potential fields

Let’s Recap

Your mapping software gives you a good map....

and you want to get
from here to here

Planning as Search

  Find a sequence/set of actions that can
transform an initial state of the world
to a goal state

  Planning Involves Search Through a
Search Space
  How to represent the search space?
  How to conduct the search?
  How to evaluate the solutions?

2

●  Find a sequence of poses that
connects the initial pose of the robot to the
goal pose

Motion Planning as Search

●  State space is configuration space
–  To perform search, we discretize the space
–  This is a big issue in planning: how do we discretize the search space? Is

it a graph? Is it a grid?

●  Actions connect pairs of states
–  Assume a P-D controller
–  If the controller can get you from one pose to the other, then that action

connects those states
–  In this course, we assume pairs of mutually visible states are connected

Setting up the State Space
  Real space

●  Configuration space

●  State space
●  Actions get you from

one state to another

Finding the free part of c-space using a grid?

  A grid square is in the c-space if it is:
  not inside an obstacle
  further than the radius of the robot from all obstacle edges

  Algorithm:
  Pick a grid square you know

is in free space
  Do breadth-first search (or

“flood-fill”) from that start square
  As each square is visited by the

search, compute the distance to
all obstacle edges

  label as “free” if the distance is
greater than the radius of the robot or
“occupied” if the distance is less

  Once breadth-first search is done,
also label all unlabelled squares as
“occupied”

Planning as Search

  Find a sequence/set of actions that can
transform an initial state of the world
to a goal state

  Planning Involves Search Through a
Search Space
  How to represent the search space?
  How to conduct the search?
  How to evaluate the solutions?

3

Planning as Tree Search

  Perform tree-based search (need c-space, cost)
  Construct the root of the tree as the start state, and

give it value 0
  While there are unexpanded leaves in the tree

  Find the leaf x with the lowest value
  For each action, create a new child leaf of x
  Set the value of each child as:

 g(x) = g(parent(x))+c(parent(x),x)
where c(x, y) is the cost of moving from
x to y (distance, in this case)

Planning by Searching a Tree

Planning by Searching a Tree Planning by Searching a Tree

4

....

Planning by Searching a Tree Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.
1.  Initialize Q with partial path (S) as only

entry; set Visited = {}
2.  If Q is empty, fail. Else, pick some

partial path N from Q
3.  If head(N) = G, return N (goal

reached!)
4.  Else

a)   Remove N from Q
b)  Find all children of head(N) not in

Visited and create all the one-
step extensions of N to each
child.

c)   Add to Q all the extended paths;
d)  Add children of head(N) to

Visited
e)   Go to step 2.

Q Visited
1 (3, 11)
2
3
4

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.
1.  Initialize Q with partial path (S) as only

entry; set Visited = {}
2.  If Q is empty, fail. Else, pick some

partial path N from Q
3.  If head(N) = G, return N (goal

reached!)
4.  Else

a)   Remove N from Q
b)  Find all children of head(N) not in

Visited and create all the one-
step extensions of N to each
child.

c)   Add to Q all the extended paths;
d)  Add children of head(N) to

Visited
e)   Go to step 2.

Q Visited
1 (3, 11)
2 (2, 11) (2, 10), (3, 10), …. (3, 11)
3
4

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.
1.  Initialize Q with partial path (S) as only

entry; set Visited = {}
2.  If Q is empty, fail. Else, pick some

partial path N from Q
3.  If head(N) = G, return N (goal

reached!)
4.  Else

a)   Remove N from Q
b)  Find all children of head(N) not in

Visited and create all the one-
step extensions of N to each
child.

c)   Add to Q all the extended paths;
d)  Add children of head(N) to

Visited
e)   Go to step 2.

Q Visited
1 (3, 11)
2 (2, 10) (3, 10), (4, 10), …. (3, 11)
3 (1, 9), (2, 9), (3, 9), …. (3, 11), (2, 10)
4

5

Simple Search Algorithm
public class Search {

 static Path search(State start, State goal) {
 Queue q = new Queue();

 HashSet<State> visited = new HashSet<State>();

 q.add(new Path(start));
 while (!q.empty()) {

 Path partialPath = q.pop();

 State head = partialPath.head();

 if (head.matches(goal))
 return partialPath; // Goal reached!

 for (int i = 0; i < head.numNeighbours(); i++) {

 if (visited.contains(head.neighbour(i))

 continue;
 // Create a new path to a node we haven’t seen before

 // by adding the neighbour of the head to the current path

 Path extension = new Path(head.neighbour(i), partialPath));
 visited.add(head.neighbour(i));

 q.push(extension);

 }

 } // End of while (q.empty());
 return null; // No path found

 }

}

Careful: the HashSet object to get O(1) tests on
whether we have seen this state before, but we may
have to override the Object.hashCode method for our
State class.

  How to determine the lowest-cost child
to consider next?

  Shallowest next
  aka: Breadth-first search
  Guaranteed shortest
  Storage intensive

Move Generation

●  Deepest next
–  aka: Depth-first search
–  Can be storage cheap
–  No optimality guarantees

●  Cheapest next
–  aka: Uniform-cost search
–  Breadth-first search is the same if the cost == depth

Informed Search – A*
  Use domain knowledge to bias the

search
  Favour actions that might get closer to

the goal
  Each state gets a value

 f(x)=g(x)+h(x)

●  For example
–  g(x) = 3
–  h(x) = ||x-g||

 =sqrt(82+182)
 =19.7

–  f(x) =22.7

Cost incurred so far,
from the start state

Estimated cost from
here to the goal:
“heuristic” cost

Informed Search – A*
  Use domain knowledge to bias the

search
  Favour actions that might get closer to

the goal
  Each state gets a value

f(x)=g(x)+h(x)

●  For example
–  g(x) = 4
–  h(x) = ||x-g||

 =sqrt(112+182)
 =21.1

–  f(x) =25.1

6

How to choose heuristics
  The closer h(x) is to the true cost to the

goal, h*(x), the more efficient your
search BUT

●  h(x) ≤ h*(x) to guarantee that A* finds the
lowest-cost path

●  In this case, h is an “admissible” heuristic

Once the search is done, and we have
found the goal

  We have a tree that contains a path from the start
(root) to the goal (some leaf)

  Follow the parent pointers in the tree and trace
back from the goal to the root, keeping track of
which states you pass through

  This set of states constitutes your plan

  To execute the plan, use your PD
controller to face the first state in
the plan, and then drive to it

  Once at the state, face and drive
to the next state

A problem with plans
 We have a plan that

gets us from the
start to the goal

 What happens if we
take an action that
causes us to leave
the plan?

1)  It’s a problem with planners!
We should use behaviours!

2)  We can replan
3)  We can keep a cached conditional plan
4)  We can keep a policy

A Reactive Motion Planner
  The potential of each obstacle

generates a repulsive force

and the potential of the goal
generates an attractive force

  Easy and fast to compute
  Susceptible to local minima

7

Numerical Potential Functions
  We can compute the “true” potential

at each point x by integrating
the forces along the desired path
from the goal to x

Numerical Potential Functions
  We can compute the “true” potential

at each point x by integrating
the forces along the desired path
from the goal to x

  If we discretize the path, we get

Numerical Potential Functions

Potential Field

  We can compute the “true” potential
at each point x by integrating
the forces along the desired path
from the goal to x

  If we discretize the path, we get

  Let’s write this recursively:

C(x) = F(x) = ∇Uatt(x)-∇Urep(x)

  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat

Numerical Potential Field

0
1 1 1
1
1 1 1

1
2
2

2 2

2 2 2 2

3
3
3

4
4
4

5
5
5

6
6
6

7
7
7

8
8
8

9
9
9

1
0 1
0 10

11
1
1 11

1
2 1
2 12

1
3 1
3 13

1
4 1
4 14

1
5 1
5 15

1
6 1
6 16

3 3
4 4
5 5

6 6
6

7 7
7

●  The numbers shown are for an obstacle-
induced cost of 0, and a goal-induced cost of
1 unit per grid cell

8

Uniform Cost Regression
  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat
  aka: Dijkstra’s algorithm

  After planning, for each
state, just look at the
neighbours and move to
the cheapest one,
i.e., just roll down hill

The Output Potential Field

Progression vs. Regression
  Progression (forward-chaining):

  Choose action whose preconditions are satisfied
  Continue until goal state is reached

  Regression (backward-chaining):
  Choose action that has an effect that matches an unachieved

subgoal
  Add unachieved preconditions to set of subgoals
  Continue until set of unachieved subgoals is empty

  Progression: + Simple algorithm (“forward simulation”)
  Often large branching factor

  Regression: + Focused on achieving goals
  Need to reason about actions
  Regression is incomplete, in general, for functional effects

Data Structures Prof. Roy has Known and Loved
  Priority Heap

  Look it up in Cormen, Leiserson, Rivest and Stein. (MIT gives you free access to the
online edition.)

  Add nodes in O(log n) time, remove the lowest (or highest) priority node in O(log n)
time.

  If your heap consists of State data structures of the form:

then you can implement any search algorithm by changing the priority scheme
  Uniform-first search if

  current priority = parent state’s priority + action cost from parent to current state
  choose lowest-priority state

  Depth-first search if
  current priority = parent state’s priority + 1
  choose highest-priority state

  A* search if
  current priority = parent state’s priority + action cost from parent to current state+

 heuristic cost from current state to goal
  choose lowest-priority state

public class State {
 int id;
 double coordinates[2];
 int neighbours[];
 double priority;

}

9

More on Data Structures
  While there are unexpanded leaves in the tree

  Find the leaf x with the lowest value
  For each action, create a new child leaf of x
  Set the value of each child

  Let’s say that each tree node is given by
 public class State {
 int id;
 double coordinates[2];
 int neighbours[];
 double priority;
 State parent;
 State [] children;
 }

  Then as you create new children, you store them in the children array
inside the parent State

  The tree structure, however, does not automatically tell you the lowest
(or highest) priority child

  Therefore, as you add each child to the parent state in the tree, also
add the child to a sorted set (e.g., java.util.TreeSet) that has the
methods add() and first() that will let you add items and retrieve the
lowest (highest) items in O(log n) time. (NB: If using TreeSet, you
would need to make sure your State class implements the comparable
interface.)

Design Choices
  How is your map described? This may have an impact on

the state space for your planner
  Is it a grid map?
  Is it a list of polygons?
  The critical choice for motion planning is state space
  The other choices tend to affect computational performance, not

robot performance

  What kind of controller do you have?
  Do you just have controllers on distance and orientation?
  Do you have behaviours that will let you do things like follow walls?

  What do you care about?
  The shortest path?
  The fastest path?

  What kind of search to use?
  Do you have a good heuristic?
  If so, then maybe A* is a good idea.

Summary

  Planning as search
  The design decisions in setting up a

planner
  Different forms of search
  A* and what an admissible heuristic is
  What a policy is, why it’s different from

a plan, and when you might want one
  When to use each

