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6.141:  
Robotics systems and science 
Lecture 12: Implementing Motion Planning  

Lecture Notes Prepared by Daniela Rus   
EECS/MIT 

Spring 2009 
Based on Slides by Nick Roy 

Reading: Chapter 3, and Craig: Robotics 

 http://courses.csail.mit.edu/6.141/
Challenge: Build a Shelter on Mars

Today’s Objectives 

  Planning and search 
  Search methods 

  Plans vs. Policies 
  Numerical potential fields 

Let’s Recap 

Your mapping software gives you a good map.... 

and you want to get 
from here to here 

Planning as Search 

  Find a sequence/set of actions that can 
transform an initial state of the world 
to a goal state 

  Planning Involves Search Through a 
Search Space 
  How to represent the search space? 
  How to conduct the search? 
  How to evaluate the solutions? 
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●  Find a sequence of poses that  
connects the initial pose of the robot to the 
goal pose 

Motion Planning as Search 

●  State space is configuration space 
–  To perform search, we discretize the space 
–  This is a big issue in planning: how do we discretize the search space? Is 

it a graph? Is it a grid? 

●  Actions connect pairs of states  
–  Assume a P-D controller  
–  If the controller can get you from one pose to the other, then that action 

connects those states 
–  In this course, we assume pairs of mutually visible states are connected 

Setting up the State Space 
  Real space 

●  Configuration space 

●  State space 
●  Actions get you from 

one state to another 

Finding the free part of c-space using a grid? 

  A grid square is in the c-space if it is: 
  not inside an obstacle 
  further than the radius of the robot from all obstacle edges 

  Algorithm: 
  Pick a grid square you know  

is in free space 
  Do breadth-first search (or  

“flood-fill”) from that start square 
  As each square is visited by the 

search, compute the distance to 
all obstacle edges 

  label as “free” if the distance is  
greater than the radius of the robot or 
“occupied” if the distance is less 

  Once breadth-first search is done,  
also label all unlabelled squares as 
“occupied” 

Planning as Search 

  Find a sequence/set of actions that can 
transform an initial state of the world 
to a goal state 

  Planning Involves Search Through a 
Search Space 
  How to represent the search space? 
  How to conduct the search? 
  How to evaluate the solutions? 
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Planning as Tree Search 

  Perform tree-based search (need c-space, cost) 
  Construct the root of the tree as the start state, and 

give it value 0 
  While there are unexpanded leaves in the tree 

  Find the leaf x with the lowest value 
  For each action, create a new child leaf of x  
  Set the value of each child as: 

   g(x) = g(parent(x))+c(parent(x),x) 
where c(x, y) is the cost of moving from 
x to y (distance, in this case) 

Planning by Searching a Tree 

Planning by Searching a Tree Planning by Searching a Tree 
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.... 

Planning by Searching a Tree Simple Search Algorithm 
Let Q be a list of partial paths,  
Let S be the start node and  
Let G be the Goal node. 
1.  Initialize Q with partial path (S) as only 

entry; set Visited = {} 
2.  If Q is empty, fail.  Else, pick some 

partial path N from Q 
3.  If head(N) = G, return N  (goal 

reached!) 
4.  Else  

a)   Remove N from Q 
b)  Find all children of head(N) not in 

Visited and create all the one-
step extensions of N to each 
child. 

c)   Add to Q all the extended paths;  
d)  Add children of head(N) to 

Visited 
e)   Go to step 2. 

Q Visited 
1 (3, 11) 
2 
3 
4 

Simple Search Algorithm 
Let Q be a list of partial paths,  
Let S be the start node and  
Let G be the Goal node. 
1.  Initialize Q with partial path (S) as only 

entry; set Visited = {} 
2.  If Q is empty, fail.  Else, pick some 

partial path N from Q 
3.  If head(N) = G, return N  (goal 

reached!) 
4.  Else  

a)   Remove N from Q 
b)  Find all children of head(N) not in 

Visited and create all the one-
step extensions of N to each 
child. 

c)   Add to Q all the extended paths;  
d)  Add children of head(N) to 

Visited 
e)   Go to step 2. 

Q Visited 
1 (3, 11) 
2 (2, 11) ( 2, 10), (3, 10), …. (3, 11) 
3 
4 

Simple Search Algorithm 
Let Q be a list of partial paths,  
Let S be the start node and  
Let G be the Goal node. 
1.  Initialize Q with partial path (S) as only 

entry; set Visited = {} 
2.  If Q is empty, fail.  Else, pick some 

partial path N from Q 
3.  If head(N) = G, return N  (goal 

reached!) 
4.  Else  

a)   Remove N from Q 
b)  Find all children of head(N) not in 

Visited and create all the one-
step extensions of N to each 
child. 

c)   Add to Q all the extended paths;  
d)  Add children of head(N) to 

Visited 
e)   Go to step 2. 

Q Visited 
1 (3, 11) 
2 (2, 10) ( 3, 10), (4, 10), …. (3, 11) 
3 (1, 9), (2, 9), (3, 9), …. (3, 11), (2, 10) 
4 
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Simple Search Algorithm 
public class Search { 

  static Path search(State start, State goal) { 
    Queue q = new Queue(); 

    HashSet<State> visited = new HashSet<State>(); 

    q.add(new Path(start)); 
    while (!q.empty()) { 

      Path partialPath = q.pop(); 

      State head = partialPath.head(); 

      if (head.matches(goal)) 
        return partialPath;    // Goal reached! 

      for (int i = 0; i < head.numNeighbours(); i++) { 

        if (visited.contains(head.neighbour(i)) 

          continue; 
        // Create a new path to a node we haven’t seen before 

        // by adding the neighbour of the head to the current path 

        Path extension = new Path(head.neighbour(i), partialPath)); 
        visited.add(head.neighbour(i)); 

        q.push(extension);  

      } 

    } // End of while (q.empty()); 
    return null; // No path found  

  } 

} 

Careful:  the HashSet object to get O(1) tests on 
whether we have seen this state before, but we may 
have to override the Object.hashCode method for our 
State class. 

  How to determine the lowest-cost child 
to consider next? 

  Shallowest next 
  aka: Breadth-first search 
  Guaranteed shortest 
  Storage intensive 

Move Generation 

●  Deepest next 
–  aka: Depth-first search 
–  Can be storage cheap 
–  No optimality guarantees 

●  Cheapest next 
–  aka: Uniform-cost search 
–  Breadth-first search is the same if the cost == depth 

Informed Search – A* 
  Use domain knowledge to bias the 

search 
  Favour actions that might get closer to 

the goal 
  Each state gets a value  

         f(x)=g(x)+h(x) 

●  For example 
–  g(x)  = 3 
–  h(x)  = ||x-g|| 

 =sqrt(82+182) 
 =19.7 

–  f(x) =22.7 

Cost incurred so far, 
from the start state 

Estimated cost from 
here to the goal: 
“heuristic” cost 

Informed Search – A* 
  Use domain knowledge to bias the 

search 
  Favour actions that might get closer to 

the goal 
  Each state gets a value  

f(x)=g(x)+h(x) 

●  For example 
–  g(x)  = 4 
–  h(x)  = ||x-g|| 

 =sqrt(112+182) 
 =21.1 

–  f(x) =25.1 
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How to choose heuristics 
  The closer h(x) is to the true cost to the 

goal, h*(x), the more efficient your 
search BUT 

●  h(x) ≤ h*(x) to guarantee that A* finds the 
lowest-cost path 

●  In this case, h is an “admissible” heuristic 

Once the search is done, and we have 
found the goal 

  We have a tree that contains a path from the start 
(root) to the goal (some leaf) 

  Follow the parent pointers in the tree and trace 
back from the goal to the root, keeping track of 
which states you pass through 

  This set of states constitutes your plan 

  To execute the plan, use your PD 
controller to face the first state in 
the plan, and then drive to it 

  Once at the state, face and drive 
to the next state 

A problem with plans 
 We have a plan that 

gets us from the 
start    to the goal 

 What happens if we 
take an action that 
causes us to leave 
the plan? 

1)  It’s a problem with planners!  
We should use behaviours! 

2)  We can replan 
3)  We can keep a cached conditional plan 
4)  We can keep a policy 

A Reactive Motion Planner  
  The potential of each obstacle 

generates a repulsive force 

and the potential of the goal 
generates an attractive force 

  Easy and fast to compute 
  Susceptible to local minima 
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Numerical Potential Functions 
  We can compute the “true” potential 

at each point x by integrating  
the forces along the desired path  
from the goal to x 

Numerical Potential Functions 
  We can compute the “true” potential 

at each point x by integrating  
the forces along the desired path  
from the goal to x 

  If we discretize the path, we get 

Numerical Potential Functions 

Potential Field 

  We can compute the “true” potential 
at each point x by integrating  
the forces along the desired path  
from the goal to x 

  If we discretize the path, we get 

  Let’s write this recursively: 

C(x) = F(x) = ∇Uatt(x)-∇Urep(x) 

  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 

Numerical Potential Field 

0 
1 1 1 
1 
1 1 1 

1 
2 
2 

2 2 

2 2 2 2 

3 
3 
3 

4 
4 
4 

5 
5 
5 

6 
6 
6 

7 
7 
7 

8 
8 
8 

9 
9 
9 

1
0 1
0 10 

11 
1
1 11 

1
2 1
2 12 
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6   6   
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●  The numbers shown are for an obstacle-
induced cost of 0, and a goal-induced cost of 
1 unit per grid cell 
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Uniform Cost Regression 
  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 
  aka: Dijkstra’s algorithm 

  After planning, for each  
state, just look at the  
neighbours and move to  
the cheapest one,  
i.e., just roll down hill 

The Output Potential Field 

Progression vs. Regression 
  Progression (forward-chaining): 

  Choose action whose preconditions are satisfied 
  Continue until goal state is reached 

  Regression (backward-chaining): 
  Choose action that has an effect that matches an unachieved 

subgoal 
  Add unachieved preconditions to set of subgoals 
  Continue until set of unachieved subgoals is empty 

  Progression: + Simple algorithm (“forward simulation”) 
  Often large branching factor 

  Regression: + Focused on achieving goals 
  Need to reason about actions 
  Regression is incomplete, in general, for functional effects 

Data Structures Prof. Roy has Known and Loved 
  Priority Heap 

  Look it up in Cormen, Leiserson, Rivest and Stein. (MIT gives you free access to the 
online edition.) 

  Add nodes in O(log n) time, remove the lowest (or highest) priority node in O(log n) 
time. 

  If your heap consists of State data structures of the form: 

then you can implement any search algorithm by changing the priority scheme 
  Uniform-first search if  

  current priority = parent state’s priority + action cost from parent to current state 
  choose lowest-priority state 

  Depth-first search if  
  current priority = parent state’s priority + 1 
  choose highest-priority state 

  A* search if  
  current priority = parent state’s priority + action cost from parent to current state+ 

     heuristic cost from current state to goal 
  choose lowest-priority state 

public class State { 
 int id;  
 double coordinates[2]; 
 int neighbours[]; 
 double priority; 

} 



9 

More on Data Structures 
  While there are unexpanded leaves in the tree 

  Find the leaf x with the lowest value 
  For each action, create a new child leaf of x  
  Set the value of each child 

  Let’s say that each tree node is given by 
   public class State { 
    int id;   
    double coordinates[2]; 
    int neighbours[]; 
    double priority; 
    State parent; 
    State [] children; 
   } 

  Then as you create new children, you store them in the children array 
inside the parent State 

  The tree structure, however, does not automatically tell you the lowest 
(or highest) priority child 

  Therefore, as you add each child to the parent state in the tree, also 
add the child to a sorted set (e.g., java.util.TreeSet) that has the 
methods add() and first() that will let you add items and retrieve the 
lowest (highest) items in O(log n) time. (NB: If using TreeSet, you 
would need to make sure your State class implements the comparable 
interface.) 

Design Choices 
  How is your map described? This may have an impact on 

the state space for your planner 
  Is it a grid map? 
  Is it a list of polygons? 
  The critical choice for motion planning is state space 
  The other choices tend to affect computational performance, not 

robot performance 

  What kind of controller do you have? 
  Do you just have controllers on distance and orientation? 
  Do you have behaviours that will let you do things like follow walls? 

  What do you care about? 
  The shortest path? 
  The fastest path? 

  What kind of search to use? 
  Do you have a good heuristic? 
  If so, then maybe A* is a good idea. 

Summary 

  Planning as search 
  The design decisions in setting up a 

planner 
  Different forms of search 
  A* and what an admissible heuristic is 
  What a policy is, why it’s different from 

a plan, and when you might want one 
  When to use each 


