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6.141:  
Robotics systems and science 
Lecture 12: Implementing Motion Planning  

Lecture Notes Prepared by Daniela Rus   
EECS/MIT 

Spring 2009 
Based on Slides by Nick Roy 

Reading: Chapter 3, and Craig: Robotics 

 http://courses.csail.mit.edu/6.141/

Challenge: Build a Shelter on Mars


Today’s Objectives 

  Planning and search 
  Search methods 

  Plans vs. Policies 
  Numerical potential fields 

Let’s Recap 

Your mapping software gives you a good map.... 

and you want to get 
from here to here 

Planning as Search 

  Find a sequence/set of actions that can 
transform an initial state of the world 
to a goal state 

  Planning Involves Search Through a 
Search Space 
  How to represent the search space? 
  How to conduct the search? 
  How to evaluate the solutions? 
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●  Find a sequence of poses that  
connects the initial pose of the robot to the 
goal pose 

Motion Planning as Search 

●  State space is configuration space 
–  To perform search, we discretize the space 
–  This is a big issue in planning: how do we discretize the search space? Is 

it a graph? Is it a grid? 

●  Actions connect pairs of states  
–  Assume a P-D controller  
–  If the controller can get you from one pose to the other, then that action 

connects those states 
–  In this course, we assume pairs of mutually visible states are connected 

Setting up the State Space 
  Real space 

●  Configuration space 

●  State space 
●  Actions get you from 

one state to another 

Finding the free part of c-space using a grid? 

  A grid square is in the c-space if it is: 
  not inside an obstacle 
  further than the radius of the robot from all obstacle edges 

  Algorithm: 
  Pick a grid square you know  

is in free space 
  Do breadth-first search (or  

“flood-fill”) from that start square 
  As each square is visited by the 

search, compute the distance to 
all obstacle edges 

  label as “free” if the distance is  
greater than the radius of the robot or 
“occupied” if the distance is less 

  Once breadth-first search is done,  
also label all unlabelled squares as 
“occupied” 

Planning as Search 

  Find a sequence/set of actions that can 
transform an initial state of the world 
to a goal state 

  Planning Involves Search Through a 
Search Space 
  How to represent the search space? 
  How to conduct the search? 
  How to evaluate the solutions? 
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Planning as Tree Search 

  Perform tree-based search (need c-space, cost) 
  Construct the root of the tree as the start state, and 

give it value 0 
  While there are unexpanded leaves in the tree 

  Find the leaf x with the lowest value 
  For each action, create a new child leaf of x  
  Set the value of each child as: 

   g(x) = g(parent(x))+c(parent(x),x) 
where c(x, y) is the cost of moving from 
x to y (distance, in this case) 

Planning by Searching a Tree 

Planning by Searching a Tree Planning by Searching a Tree 
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.... 

Planning by Searching a Tree Simple Search Algorithm 
Let Q be a list of partial paths,  
Let S be the start node and  
Let G be the Goal node. 
1.  Initialize Q with partial path (S) as only 

entry; set Visited = {} 
2.  If Q is empty, fail.  Else, pick some 

partial path N from Q 
3.  If head(N) = G, return N  (goal 

reached!) 
4.  Else  

a)   Remove N from Q 
b)  Find all children of head(N) not in 

Visited and create all the one-
step extensions of N to each 
child. 

c)   Add to Q all the extended paths;  
d)  Add children of head(N) to 

Visited 
e)   Go to step 2. 

Q Visited 
1 (3, 11) 
2 
3 
4 

Simple Search Algorithm 
Let Q be a list of partial paths,  
Let S be the start node and  
Let G be the Goal node. 
1.  Initialize Q with partial path (S) as only 

entry; set Visited = {} 
2.  If Q is empty, fail.  Else, pick some 

partial path N from Q 
3.  If head(N) = G, return N  (goal 

reached!) 
4.  Else  

a)   Remove N from Q 
b)  Find all children of head(N) not in 

Visited and create all the one-
step extensions of N to each 
child. 

c)   Add to Q all the extended paths;  
d)  Add children of head(N) to 

Visited 
e)   Go to step 2. 

Q Visited 
1 (3, 11) 
2 (2, 11) ( 2, 10), (3, 10), …. (3, 11) 
3 
4 

Simple Search Algorithm 
Let Q be a list of partial paths,  
Let S be the start node and  
Let G be the Goal node. 
1.  Initialize Q with partial path (S) as only 

entry; set Visited = {} 
2.  If Q is empty, fail.  Else, pick some 

partial path N from Q 
3.  If head(N) = G, return N  (goal 

reached!) 
4.  Else  

a)   Remove N from Q 
b)  Find all children of head(N) not in 

Visited and create all the one-
step extensions of N to each 
child. 

c)   Add to Q all the extended paths;  
d)  Add children of head(N) to 

Visited 
e)   Go to step 2. 

Q Visited 
1 (3, 11) 
2 (2, 10) ( 3, 10), (4, 10), …. (3, 11) 
3 (1, 9), (2, 9), (3, 9), …. (3, 11), (2, 10) 
4 
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Simple Search Algorithm 
public class Search { 

  static Path search(State start, State goal) { 
    Queue q = new Queue(); 

    HashSet<State> visited = new HashSet<State>(); 

    q.add(new Path(start)); 
    while (!q.empty()) { 

      Path partialPath = q.pop(); 

      State head = partialPath.head(); 

      if (head.matches(goal)) 
        return partialPath;    // Goal reached! 

      for (int i = 0; i < head.numNeighbours(); i++) { 

        if (visited.contains(head.neighbour(i)) 

          continue; 
        // Create a new path to a node we haven’t seen before 

        // by adding the neighbour of the head to the current path 

        Path extension = new Path(head.neighbour(i), partialPath)); 
        visited.add(head.neighbour(i)); 

        q.push(extension);  

      } 

    } // End of while (q.empty()); 
    return null; // No path found  

  } 

} 

Careful:  the HashSet object to get O(1) tests on 
whether we have seen this state before, but we may 
have to override the Object.hashCode method for our 
State class. 

  How to determine the lowest-cost child 
to consider next? 

  Shallowest next 
  aka: Breadth-first search 
  Guaranteed shortest 
  Storage intensive 

Move Generation 

●  Deepest next 
–  aka: Depth-first search 
–  Can be storage cheap 
–  No optimality guarantees 

●  Cheapest next 
–  aka: Uniform-cost search 
–  Breadth-first search is the same if the cost == depth 

Informed Search – A* 
  Use domain knowledge to bias the 

search 
  Favour actions that might get closer to 

the goal 
  Each state gets a value  

         f(x)=g(x)+h(x) 

●  For example 
–  g(x)  = 3 
–  h(x)  = ||x-g|| 

 =sqrt(82+182) 
 =19.7 

–  f(x) =22.7 

Cost incurred so far, 
from the start state 

Estimated cost from 
here to the goal: 
“heuristic” cost 

Informed Search – A* 
  Use domain knowledge to bias the 

search 
  Favour actions that might get closer to 

the goal 
  Each state gets a value  

f(x)=g(x)+h(x) 

●  For example 
–  g(x)  = 4 
–  h(x)  = ||x-g|| 

 =sqrt(112+182) 
 =21.1 

–  f(x) =25.1 
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How to choose heuristics 
  The closer h(x) is to the true cost to the 

goal, h*(x), the more efficient your 
search BUT 

●  h(x) ≤ h*(x) to guarantee that A* finds the 
lowest-cost path 

●  In this case, h is an “admissible” heuristic 

Once the search is done, and we have 
found the goal 

  We have a tree that contains a path from the start 
(root) to the goal (some leaf) 

  Follow the parent pointers in the tree and trace 
back from the goal to the root, keeping track of 
which states you pass through 

  This set of states constitutes your plan 

  To execute the plan, use your PD 
controller to face the first state in 
the plan, and then drive to it 

  Once at the state, face and drive 
to the next state 

A problem with plans 
 We have a plan that 

gets us from the 
start    to the goal 

 What happens if we 
take an action that 
causes us to leave 
the plan? 

1)  It’s a problem with planners!  
We should use behaviours! 

2)  We can replan 
3)  We can keep a cached conditional plan 
4)  We can keep a policy 

A Reactive Motion Planner  
  The potential of each obstacle 

generates a repulsive force 

and the potential of the goal 
generates an attractive force 

  Easy and fast to compute 
  Susceptible to local minima 
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Numerical Potential Functions 
  We can compute the “true” potential 

at each point x by integrating  
the forces along the desired path  
from the goal to x 

Numerical Potential Functions 
  We can compute the “true” potential 

at each point x by integrating  
the forces along the desired path  
from the goal to x 

  If we discretize the path, we get 

Numerical Potential Functions 

Potential Field 

  We can compute the “true” potential 
at each point x by integrating  
the forces along the desired path  
from the goal to x 

  If we discretize the path, we get 

  Let’s write this recursively: 

C(x) = F(x) = ∇Uatt(x)-∇Urep(x) 

  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 

Numerical Potential Field 

0 
1 1 1 
1 
1 1 1 

1 
2 
2 

2 2 

2 2 2 2 

3 
3 
3 

4 
4 
4 

5 
5 
5 

6 
6 
6 

7 
7 
7 

8 
8 
8 

9 
9 
9 

1
0 1
0 10 

11 
1
1 11 

1
2 1
2 12 

1
3 1
3 13 

1
4 1
4 14 

1
5 1
5 15 

1
6 1
6 16 

3   3 
4   4 
5   5 

6   6   
6 

7   7   
7 

●  The numbers shown are for an obstacle-
induced cost of 0, and a goal-induced cost of 
1 unit per grid cell 
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Uniform Cost Regression 
  Initialize all states with value ∞ 
  Label the goal with value 0 
  Update all states so that 

f(x)=min(c(x,y)+f(y)) 
  Repeat 
  aka: Dijkstra’s algorithm 

  After planning, for each  
state, just look at the  
neighbours and move to  
the cheapest one,  
i.e., just roll down hill 

The Output Potential Field 

Progression vs. Regression 
  Progression (forward-chaining): 

  Choose action whose preconditions are satisfied 
  Continue until goal state is reached 

  Regression (backward-chaining): 
  Choose action that has an effect that matches an unachieved 

subgoal 
  Add unachieved preconditions to set of subgoals 
  Continue until set of unachieved subgoals is empty 

  Progression: + Simple algorithm (“forward simulation”) 
  Often large branching factor 

  Regression: + Focused on achieving goals 
  Need to reason about actions 
  Regression is incomplete, in general, for functional effects 

Data Structures Prof. Roy has Known and Loved 
  Priority Heap 

  Look it up in Cormen, Leiserson, Rivest and Stein. (MIT gives you free access to the 
online edition.) 

  Add nodes in O(log n) time, remove the lowest (or highest) priority node in O(log n) 
time. 

  If your heap consists of State data structures of the form: 

then you can implement any search algorithm by changing the priority scheme 
  Uniform-first search if  

  current priority = parent state’s priority + action cost from parent to current state 
  choose lowest-priority state 

  Depth-first search if  
  current priority = parent state’s priority + 1 
  choose highest-priority state 

  A* search if  
  current priority = parent state’s priority + action cost from parent to current state+ 

     heuristic cost from current state to goal 
  choose lowest-priority state 

public class State { 
 int id;  
 double coordinates[2]; 
 int neighbours[]; 
 double priority; 

} 
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More on Data Structures 
  While there are unexpanded leaves in the tree 

  Find the leaf x with the lowest value 
  For each action, create a new child leaf of x  
  Set the value of each child 

  Let’s say that each tree node is given by 
   public class State { 
    int id;   
    double coordinates[2]; 
    int neighbours[]; 
    double priority; 
    State parent; 
    State [] children; 
   } 

  Then as you create new children, you store them in the children array 
inside the parent State 

  The tree structure, however, does not automatically tell you the lowest 
(or highest) priority child 

  Therefore, as you add each child to the parent state in the tree, also 
add the child to a sorted set (e.g., java.util.TreeSet) that has the 
methods add() and first() that will let you add items and retrieve the 
lowest (highest) items in O(log n) time. (NB: If using TreeSet, you 
would need to make sure your State class implements the comparable 
interface.) 

Design Choices 
  How is your map described? This may have an impact on 

the state space for your planner 
  Is it a grid map? 
  Is it a list of polygons? 
  The critical choice for motion planning is state space 
  The other choices tend to affect computational performance, not 

robot performance 

  What kind of controller do you have? 
  Do you just have controllers on distance and orientation? 
  Do you have behaviours that will let you do things like follow walls? 

  What do you care about? 
  The shortest path? 
  The fastest path? 

  What kind of search to use? 
  Do you have a good heuristic? 
  If so, then maybe A* is a good idea. 

Summary 

  Planning as search 
  The design decisions in setting up a 

planner 
  Different forms of search 
  A* and what an admissible heuristic is 
  What a policy is, why it’s different from 

a plan, and when you might want one 
  When to use each 


