
1

6.141:
Robotics systems and science
Lecture 12: Implementing Motion Planning

Lecture Notes Prepared by Daniela Rus
EECS/MIT

Spring 2009
Based on Slides by Nick Roy

Reading: Chapter 3, and Craig: Robotics

 http://courses.csail.mit.edu/6.141/
Challenge: Build a Shelter on Mars

Today’s Objectives

  Planning and search
  Search methods

  Plans vs. Policies
  Numerical potential fields

Let’s Recap

Your mapping software gives you a good map....

and you want to get
from here to here

Planning as Search

  Find a sequence/set of actions that can
transform an initial state of the world
to a goal state

  Planning Involves Search Through a
Search Space
  How to represent the search space?
  How to conduct the search?
  How to evaluate the solutions?

2

●  Find a sequence of poses that
connects the initial pose of the robot to the
goal pose

Motion Planning as Search

●  State space is configuration space
–  To perform search, we discretize the space
–  This is a big issue in planning: how do we discretize the search space? Is

it a graph? Is it a grid?

●  Actions connect pairs of states
–  Assume a P-D controller
–  If the controller can get you from one pose to the other, then that action

connects those states
–  In this course, we assume pairs of mutually visible states are connected

Setting up the State Space
  Real space

●  Configuration space

●  State space
●  Actions get you from

one state to another

Finding the free part of c-space using a grid?

  A grid square is in the c-space if it is:
  not inside an obstacle
  further than the radius of the robot from all obstacle edges

  Algorithm:
  Pick a grid square you know

is in free space
  Do breadth-first search (or

“flood-fill”) from that start square
  As each square is visited by the

search, compute the distance to
all obstacle edges

  label as “free” if the distance is
greater than the radius of the robot or
“occupied” if the distance is less

  Once breadth-first search is done,
also label all unlabelled squares as
“occupied”

Planning as Search

  Find a sequence/set of actions that can
transform an initial state of the world
to a goal state

  Planning Involves Search Through a
Search Space
  How to represent the search space?
  How to conduct the search?
  How to evaluate the solutions?

3

Planning as Tree Search

  Perform tree-based search (need c-space, cost)
  Construct the root of the tree as the start state, and

give it value 0
  While there are unexpanded leaves in the tree

  Find the leaf x with the lowest value
  For each action, create a new child leaf of x
  Set the value of each child as:

 g(x) = g(parent(x))+c(parent(x),x)
where c(x, y) is the cost of moving from
x to y (distance, in this case)

Planning by Searching a Tree

Planning by Searching a Tree Planning by Searching a Tree

4

....

Planning by Searching a Tree Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.
1.  Initialize Q with partial path (S) as only

entry; set Visited = {}
2.  If Q is empty, fail. Else, pick some

partial path N from Q
3.  If head(N) = G, return N (goal

reached!)
4.  Else

a)   Remove N from Q
b)  Find all children of head(N) not in

Visited and create all the one-
step extensions of N to each
child.

c)   Add to Q all the extended paths;
d)  Add children of head(N) to

Visited
e)   Go to step 2.

Q Visited
1 (3, 11)
2
3
4

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.
1.  Initialize Q with partial path (S) as only

entry; set Visited = {}
2.  If Q is empty, fail. Else, pick some

partial path N from Q
3.  If head(N) = G, return N (goal

reached!)
4.  Else

a)   Remove N from Q
b)  Find all children of head(N) not in

Visited and create all the one-
step extensions of N to each
child.

c)   Add to Q all the extended paths;
d)  Add children of head(N) to

Visited
e)   Go to step 2.

Q Visited
1 (3, 11)
2 (2, 11) (2, 10), (3, 10), …. (3, 11)
3
4

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.
1.  Initialize Q with partial path (S) as only

entry; set Visited = {}
2.  If Q is empty, fail. Else, pick some

partial path N from Q
3.  If head(N) = G, return N (goal

reached!)
4.  Else

a)   Remove N from Q
b)  Find all children of head(N) not in

Visited and create all the one-
step extensions of N to each
child.

c)   Add to Q all the extended paths;
d)  Add children of head(N) to

Visited
e)   Go to step 2.

Q Visited
1 (3, 11)
2 (2, 10) (3, 10), (4, 10), …. (3, 11)
3 (1, 9), (2, 9), (3, 9), …. (3, 11), (2, 10)
4

5

Simple Search Algorithm
public class Search {

 static Path search(State start, State goal) {
 Queue q = new Queue();

 HashSet<State> visited = new HashSet<State>();

 q.add(new Path(start));
 while (!q.empty()) {

 Path partialPath = q.pop();

 State head = partialPath.head();

 if (head.matches(goal))
 return partialPath; // Goal reached!

 for (int i = 0; i < head.numNeighbours(); i++) {

 if (visited.contains(head.neighbour(i))

 continue;
 // Create a new path to a node we haven’t seen before

 // by adding the neighbour of the head to the current path

 Path extension = new Path(head.neighbour(i), partialPath));
 visited.add(head.neighbour(i));

 q.push(extension);

 }

 } // End of while (q.empty());
 return null; // No path found

 }

}

Careful: the HashSet object to get O(1) tests on
whether we have seen this state before, but we may
have to override the Object.hashCode method for our
State class.

  How to determine the lowest-cost child
to consider next?

  Shallowest next
  aka: Breadth-first search
  Guaranteed shortest
  Storage intensive

Move Generation

●  Deepest next
–  aka: Depth-first search
–  Can be storage cheap
–  No optimality guarantees

●  Cheapest next
–  aka: Uniform-cost search
–  Breadth-first search is the same if the cost == depth

Informed Search – A*
  Use domain knowledge to bias the

search
  Favour actions that might get closer to

the goal
  Each state gets a value

 f(x)=g(x)+h(x)

●  For example
–  g(x) = 3
–  h(x) = ||x-g||

 =sqrt(82+182)
 =19.7

–  f(x) =22.7

Cost incurred so far,
from the start state

Estimated cost from
here to the goal:
“heuristic” cost

Informed Search – A*
  Use domain knowledge to bias the

search
  Favour actions that might get closer to

the goal
  Each state gets a value

f(x)=g(x)+h(x)

●  For example
–  g(x) = 4
–  h(x) = ||x-g||

 =sqrt(112+182)
 =21.1

–  f(x) =25.1

6

How to choose heuristics
  The closer h(x) is to the true cost to the

goal, h*(x), the more efficient your
search BUT

●  h(x) ≤ h*(x) to guarantee that A* finds the
lowest-cost path

●  In this case, h is an “admissible” heuristic

Once the search is done, and we have
found the goal

  We have a tree that contains a path from the start
(root) to the goal (some leaf)

  Follow the parent pointers in the tree and trace
back from the goal to the root, keeping track of
which states you pass through

  This set of states constitutes your plan

  To execute the plan, use your PD
controller to face the first state in
the plan, and then drive to it

  Once at the state, face and drive
to the next state

A problem with plans
 We have a plan that

gets us from the
start to the goal

 What happens if we
take an action that
causes us to leave
the plan?

1)  It’s a problem with planners!
We should use behaviours!

2)  We can replan
3)  We can keep a cached conditional plan
4)  We can keep a policy

A Reactive Motion Planner
  The potential of each obstacle

generates a repulsive force

and the potential of the goal
generates an attractive force

  Easy and fast to compute
  Susceptible to local minima

7

Numerical Potential Functions
  We can compute the “true” potential

at each point x by integrating
the forces along the desired path
from the goal to x

Numerical Potential Functions
  We can compute the “true” potential

at each point x by integrating
the forces along the desired path
from the goal to x

  If we discretize the path, we get

Numerical Potential Functions

Potential Field

  We can compute the “true” potential
at each point x by integrating
the forces along the desired path
from the goal to x

  If we discretize the path, we get

  Let’s write this recursively:

C(x) = F(x) = ∇Uatt(x)-∇Urep(x)

  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat

Numerical Potential Field

0
1 1 1
1
1 1 1

1
2
2

2 2

2 2 2 2

3
3
3

4
4
4

5
5
5

6
6
6

7
7
7

8
8
8

9
9
9

1
0 1
0 10

11
1
1 11

1
2 1
2 12

1
3 1
3 13

1
4 1
4 14

1
5 1
5 15

1
6 1
6 16

3 3
4 4
5 5

6 6
6

7 7
7

●  The numbers shown are for an obstacle-
induced cost of 0, and a goal-induced cost of
1 unit per grid cell

8

Uniform Cost Regression
  Initialize all states with value ∞
  Label the goal with value 0
  Update all states so that

f(x)=min(c(x,y)+f(y))
  Repeat
  aka: Dijkstra’s algorithm

  After planning, for each
state, just look at the
neighbours and move to
the cheapest one,
i.e., just roll down hill

The Output Potential Field

Progression vs. Regression
  Progression (forward-chaining):

  Choose action whose preconditions are satisfied
  Continue until goal state is reached

  Regression (backward-chaining):
  Choose action that has an effect that matches an unachieved

subgoal
  Add unachieved preconditions to set of subgoals
  Continue until set of unachieved subgoals is empty

  Progression: + Simple algorithm (“forward simulation”)
  Often large branching factor

  Regression: + Focused on achieving goals
  Need to reason about actions
  Regression is incomplete, in general, for functional effects

Data Structures Prof. Roy has Known and Loved
  Priority Heap

  Look it up in Cormen, Leiserson, Rivest and Stein. (MIT gives you free access to the
online edition.)

  Add nodes in O(log n) time, remove the lowest (or highest) priority node in O(log n)
time.

  If your heap consists of State data structures of the form:

then you can implement any search algorithm by changing the priority scheme
  Uniform-first search if

  current priority = parent state’s priority + action cost from parent to current state
  choose lowest-priority state

  Depth-first search if
  current priority = parent state’s priority + 1
  choose highest-priority state

  A* search if
  current priority = parent state’s priority + action cost from parent to current state+

 heuristic cost from current state to goal
  choose lowest-priority state

public class State {
 int id;
 double coordinates[2];
 int neighbours[];
 double priority;

}

9

More on Data Structures
  While there are unexpanded leaves in the tree

  Find the leaf x with the lowest value
  For each action, create a new child leaf of x
  Set the value of each child

  Let’s say that each tree node is given by
 public class State {
 int id;
 double coordinates[2];
 int neighbours[];
 double priority;
 State parent;
 State [] children;
 }

  Then as you create new children, you store them in the children array
inside the parent State

  The tree structure, however, does not automatically tell you the lowest
(or highest) priority child

  Therefore, as you add each child to the parent state in the tree, also
add the child to a sorted set (e.g., java.util.TreeSet) that has the
methods add() and first() that will let you add items and retrieve the
lowest (highest) items in O(log n) time. (NB: If using TreeSet, you
would need to make sure your State class implements the comparable
interface.)

Design Choices
  How is your map described? This may have an impact on

the state space for your planner
  Is it a grid map?
  Is it a list of polygons?
  The critical choice for motion planning is state space
  The other choices tend to affect computational performance, not

robot performance

  What kind of controller do you have?
  Do you just have controllers on distance and orientation?
  Do you have behaviours that will let you do things like follow walls?

  What do you care about?
  The shortest path?
  The fastest path?

  What kind of search to use?
  Do you have a good heuristic?
  If so, then maybe A* is a good idea.

Summary

  Planning as search
  The design decisions in setting up a

planner
  Different forms of search
  A* and what an admissible heuristic is
  What a policy is, why it’s different from

a plan, and when you might want one
  When to use each

