6.141:

Robotics systems and science
Lecture 12: Implementing Motion Planning

Lecture Notes Prepared by Daniela Rus
EECS/MIT
Spring 2009
Based on Slides by Nick Roy
Reading: Chapter 3, and Craig: Robotics

http://courses.csail.mit.edu/6.141/
Challenge: Build a Shelter on Mars

Today’s Objectives

= Planning and search
= Search methods
= Plans vs. Policies
= Numerical potential fields

Let’'s Recap

Your mapping software gives you a good map....

and you want to get

j from here to here
AN
——

Planning as Search

= Find a sequence/set of actions that can
transform an initial state of the world
to a goal state

= Planning Involves Search Through a
Search Space
= How to represent the search space?
= How to conduct the search?
= How to evaluate the solutions?

Motion Planning as Search

. Find a sequence of poses that
connects the initial pose of the robot to the
goal pose

. State space is configuration space
- To perform search, we discretize the space
- This is a big issue in planning: how do we discretize the search space? Is
it a graph? Is it a grid?

. Actions connect pairs of states
- Assume a P-D controller
- If the controller can get you from one pose to the other, then that action
connects those states
- In this course, we assume pairs of mutually visible states are connected

Setting up the State Space

= Real space

. Configuration space

. State space
. Actions get you from
one state to another

Finding the free part of c-space using a grid?

= A grid square is in the c-space if it is:
= not inside an obstacle
= further than the radius of the robot from all obstacle edges

= Algorithm:

Pick a grid square you know

is in free space

Do breadth-first search (or
“flood-fill") from that start square
As each square is visited by the
search, compute the distance to
all obstacle edges

label as “free” if the distance is
greater than the radius of the robot or
“occupied” if the distance is less
Once breadth-first search is done,
also label all unlabelled squares as
“occunied”

Planning as Search

= Find a sequence/set of actions that can
transform an initial state of the world
to a goal state

= Planning Involves Search Through a
Search Space
= How to represent the search space?
= How to conduct the search?
= How to evaluate the solutions?

Planning as Tree Search

= Perform tree-based search (need c-space, cost) P| anning by Sea
= Construct the root of the tree as the start state, and)
give it value 0

= While there are unexpanded leaves in the tree
= Find the leaf x with the lowest value
= For each action, create a new child leaf of x
= Set the value of each child as:
g(x) = g(parent(x))+c(parent(x),x)
where c(x, y) is the cost of moving from
X to y (distance, in this case)

I

Planning by Sea

ree Planning by Seatc

S
S
S
S
S

Planning by Searching a

e

Tre

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S) as only
entry; set Visited = {}

2. If Qis empty, fail. Else, pick some
partial path N from Q

3. If head(N) = G, return N (goal
reached!)

4. Else

a) Remove N from Q

b) Find all children of head(N) not in
Visited and create all the one-

step extensions of N to each

child. Q Visited

c) Add to Qall the extended paths;

d) Add children of head(N) to

Visited

e) Gotostep2.

1.

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Initialize Q with partial path (S) as only
entry; set Visited = {}

If Q is empty, fail. Else, pick some
partial path N from Q

If head(N) = G, return N (goal
reached!)

Else
a) Remove N from Q

b) Find all children of head(N) not in
Visited and create all the one-
step extensions of N to each
child.

c) Add to Q all the extended paths;

d) Add children of head(N) to
Visited

e) Gotostep2.

Q Visited
(3,11)
(2,11) (2,10, (3, 10), (6,1

N

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S) as only
entry; set Visited = {}

2. If Qis empty, fail. Else, pick some
partial path N from Q

3. If head(N) = G, return N (goal
reached!)

4. Else

a) Remove N from Q

b) Find all children of head(N) not in
Visited and create all the one-

step extensions of N to each

child. Q Visited

c) Add to Qall the extended paths; (3,11)

d) Add children of head(N) to (2,10) (3, 10), (4, 10), | (3,11)

Visited

(1,9,(2,9,(3,9), .. (3,11), (2,10

N

e) Gotostep2.

Simple Search Algorithm

public ¢

ss Search
static

th search(State start, State goal) {
Queue g = new Queue();
HashSet<State> visited = new HashSet<State>();
g.add (new Path(start));
while (!g.empty())

Path partialPath = q.pop();

State head = partialPath.head();

if (head.matches (goal))

return partialPath;

// Goal reached!
for (int i = 0; i <

head.numNeighbours () ; i++)
if (visited.contains(head.neighbour (i))
continue;
// Create a new path to a node we haven’t seen before
// by adding the neighbour of the head to the current path
Path extension = new Path(head.neighbour (i), partialPath));
visited.add (head.neighbour (i))
q.push (extension) ;

// End of while (q.empty()); .
return null; // No path founa Careful: the HashSet object to get O(1) tests on
whether we have seen this state before, but we may

have to override the Object.hashCode method for our
State class.

Move Generation

= How to determine the lowest-cost child
to consider next?

= Shallowest next
= aka: Breadth-first search
= Guaranteed shortest
= Storage intensive

. Deepest next
- aka: Depth-first search

- Can be storage cheap

- No optimality guarantees
. Cheapest next

- aka: Uniform-cost search
- Breadth-first search is the same if the cost == depth

|

Informed Search — A*

= Use domain knowledge to bias the
search

= Favour act

\ . | Estimated cost from t cIos‘eTr‘ EO

Cost incurred here to the goal:

ol from the stari “heuristic” cost
L ———

00 wh(x)

in
. For example . For example
-g(x) =3 -g(x) =4
- f(x) =22.7 - f(x) =25.1

Informed Search — A*

= Use domain knowledge to bias the
search

= Favour actions that might get closer to
the goal]

= Each state gets a value =
f(x)=g(x)+h(x)

How to choose heuristics

= The closer h(x) is to the true cost to the
goal, h*(x), the more efficient your
search BUT

. h(x) < h*(x) to guarantee that A* finds the
lowest-cost path
. In this case, h is an “admissible” heuristic

Once the search is done, and we have
found the goal

We have a tree that contains a path from the start
(root) to the goal (some leaf)

Follow the parent pointers in the tree and trace
back from the goal to the root, keeping track of
which states you pass through

This set of states constitutes your plan

To execute the plan, use your PD
controller to face the first state in
the plan, and then drive to it

Once at the state, face and drive

to the next state

A problem with plans

= We have a plan that
gets us from the
start | to the goal @
= What happens if we
take an action that
causes us to leave
the plan?
1 It's a problem with planners!
We should use behaviours!
» We can replan
3 We can keep a cached conditional plan
4 We can keep a policy

A Reactive Motion Planner

= The potential of each obstacle
generates a repulsive force

1
Urep =
x|

and the potential of the goal
generates an attractive force

2

U

att = EH

X = xgoal

AAAAAAALAAAL

= Easy and fast to compute
= Susceptible to local minima

Numerical Potential Functions

= We can compute the “true” potential
at each point x by integrating
the forces along the desired path
from the goal to x

V(x) =min [VU, (x(1)) VU, (x()dr

rep

Numerical Potential Functions

= We can compute the “true” potential
at each point x by integrating
the forces along the desired path
from the goal to x

((1))dr

rep

V(x) =min [VU, (x(1)) VU,

= If we discretize the path, we get
V()= min 3 VU, (¥)-VU,, ()

Xy,
U XEXN X g

Numerical Potential Functions

= We can compute the “true” potential
at each point x by integrating
the forces along the desired path
from the goal to x

rep

V(x) = minf— VU, (x(t))-VU,, (7(t))dt
= If we distretize the path, we get

7(x) = min 2(VU, (x)-VU,, (<))

X,
oal
XEXTX g0

Potential Field
= Let's write this recursively:
V(x) =~ (x)+ VU, (x) b + miny(x)

-C+mini(¥) €0 = F0 = VUo(3)- VU ()

T
il Numerical Potent|al Field

= Initialize all states with value co
= Label the goal with value 0
Update all states so that
fOx)=min(c(x,y)+f(y))
Repeat

NN

|||
HEEE
98|76
9(8|76
9817 [6

. The numbers shown are for an obstacle-
induced cost of 0, and a goal-induced cost of
1 unit per grid cell

Uniform Cost Regression
Initialize all states with value co
Label the goal with value 0
Update all states so that
f(x)=min(c(x,y)+f(y))
Repeat

aka: Dijkstra’s algorithm

After planning, for each
state, just look at the
neighbours and move to

the cheapest one,
i.e., just roll down hill

The Output Pgtential Field

Progression vs. Regression

= Progression (forward-chaining):
= Choose action whose preconditions are satisfied
= Continue until goal state is reached
= Regression (backward-chaining):
= Choose action that has an effect that matches an unachieved
subgoal
= Add unachieved preconditions to set of subgoals
= Continue until set of unachieved subgoals is empty
= Progression: + Simple algorithm (“forward simulation”)
= Often large branching factor
= Regression: + Focused on achieving goals
= Need to reason about actions
= Regression is incomplete, in general, for functional effects

Data Structures Prof. Roy has Known and Loved
= Priority Heap
= Look it up in Cormen, Leiserson, Rivest and Stein. (MIT gives you free access to the
online edition.)
= Add nodes in O(log n) time, remove the lowest (or highest) priority node in O(log n)
time.
= If your heap consists of state data structures of the form:
public class State (
int id;
double coordinates[2];
int neighbours(];
double priority;
. } " . -
then you can implement any search algorithm by changing the priority scheme
= Uniform-first search if
= current priority = parent state’s priority + action cost from parent to current state
= choose lowest-priority state
= Depth-first search if
= current priority = parent state’s priority + 1
= choose highest-priority state
= A*search if
= current priority = parent state’s priority + action cost from parent to current state+
heuristic cost from current state to goal
= choose lowest-priority state

More on Data Structures

While there are unexpanded leaves in the tree
= Find the leaf x with the lowest value

= For each action, create a new child leaf of x
= Set the value of each child
Let’s say that each tree node is given by

public class State {
int id;
double coordinates[2];
int neighbours[];

double priority;
State parent;
state [] children; L

Then as you create new children, you store them in the children array
inside the parent State

The tree structure, however, does not automatically tell you the lowest
(or highest) priority child

Therefore, as you add each child to the parent state in the tree, also
add the child to a sorted set (e.g., java.util. TreeSet) that has the
methods add() and first() that will let you add items and retrieve the
lowest (highest) items in O(log n) time. (NB: If using TreeSet, you
would need to make sure your State class implements the comparable
interface.)

Design Choices

How is your map described? This may have an impact on
the state space for your planner
Is it a grid map?
Is it a list of polygons?
The critical choice for motion planning is state space
The other choices tend to affect computational performance, not
robot performance
What kind of controller do you have?
= Do you just have controllers on distance and orientation?
= Do you have behaviours that will let you do things like follow walls?
What do you care about?
= The shortest path?
= The fastest path?
What kind of search to use?
= Do you have a good heuristic?
= If so, then maybe A* is a good idea.

Summary

= Planning as search

= The design decisions in setting up a
planner

= Different forms of search
= A* and what an admissible heuristic is

= What a policy is, why it's different from
a plan, and when you might want one

= When to use each

