
1

6.141:
Robotics systems and science
Lecture 11: Configuration Space and
 Motion Planning

Lecture Notes Prepared by Daniela Rus
EECS/MIT

Spring 2009
Figures by Nancy Amato, Rodney Brooks, Vijay Kumar

Reading: Chapter 3, and Craig: Robotics

 http://courses.csail.mit.edu/6.141/

Challenge: Build a Shelter on Mars

Announcements

  Sign up for debates by Wed April 1 by sending email
to bryt@csail.mit.edu

  Great Debaters (and pizza): Wed April 1 at 5:30pm
(save date, location 32-D463, rsvp to Bryt)

  Read about 8 course debates at
http://courses.csail.mit.edu/6.141/spring2009/pub/

debates/Debates.html

Note: See Syllabus for Debate Slots

Sense

Plan

Signals to joint controllers/drivers
•  joint velocities, joint torques

Local data about the world

Global picture pf the world

Act

Deliberative Architecture

Map, Localize

This week

Last Week

2 Weeks Ago Motion Planner

Trajectory Generator

Controller

Signals to joint controllers/drivers

subgoals

smooth trajectory

Robot motors, sensors
+ External world

Localization

Calibration

Motion Planning

2

  Control architectures: reactive,
behavior, deliberative

  Visibility Graphs for Motion Planning
  Configuration Space
  Localization

During the last module we saw Today

  Understand c-space
  Motion planning with grids
  Probabilistic motion planning

Transforming to C-Space

Higher
dimension

Simpler problem

C-space Overview
C-obst

C-obst

C-obst

C-obst

C-obst

C-Space

6D C-space
(x,y,z,pitch,roll,yaw)

3D C-space
(x,y,z) 3D C-space

(α,β,γ)
α

β
 γ

•  robot maps to a point in higher
 dimensional space
•  parameter for each degree of freedom
 (dof) of robot
•  C-space = set of all robot placements
•  C-obstacle = infeasible robot placements

2n-D C-space
(φ1, ψ1, φ2, ψ2, . . . , φ n, ψ n)

3

C-obstacle Example Transforming to C-Space

C-obstacle
for fixed robot orientation

Robot

What if the robot can rotate?

4

What if the robot can rotate?

Robot

How do we compute C-space

  Identify dimensions
  Compute all c-obstacles

How do we compute c-obstacles?

Step 1: Reflect Robot

C-space Algorithm

Step 2: Minkowski sum with reflected robot

5

C-space Algorithm

Step 2: Vert (- Robot) + Vert (Obstacle)

C-space Algorithm

Step 3: ConvexHull (Vert (- Robot) + Vert (Obstacle))

Convex Hull Algorithm How do we compute convex hulls?

6

Configuration Space with Rotations

How do we compute this?

C-obstacle with Rotations
simple 2D workspace obstacle
 => complicated 3D C-obstacle

Figure from Latombe’91

 Motion Planning Algorithm
 (1) Compute c-obstacle for each obstacle
 (Reflect points, Minkowsky sums, convex hull)
 (2) Find path from start to goal for point robot

  The robots DOF dictate (1)
  The method for (2) differentiates among motion

planning algorithms

Motion Planning Summary

robot

obst

obst

obst

obst

x
y

θ

C-obst

C-obst C-obst

C-obst

robot
Path is swept volume Path is 1D curve

Workspace

C-space

7

How do we find the path?
Recall Visibility Graphs

In 2D the V-graph method finds the shortest path from S to G
What about 3D?

Figure from Latombe’91

Most motion planning problems are PSPACE-hard
[Reif 79, Hopcroft et al. 84 & 86]
The best deterministic algorithm known has running
time that is exponential in the dimension of the robot’s
C-space [Canny 86]
•  C-space has high dimension - 6D for rigid body in 3-space
•  simple obstacles have complex C-obstacles impractical to compute
explicit representation of freespace for high dof robots

So … attention has turned to approximation and
randomized algorithms which
•  trade full completeness of the planner
•  for a major gain in efficiency

How hard is this to compute?
The Complexity of Motion Plannin

Exact Cell Decomposition
for finding path

Searching the Convex Cells
for finding path

Build graph
Search for path

8

Approximate Cell Decomposition Cell Connectivity Graph

Probabilistic Road Maps (PRM)
for finding paths [Kavraki at al 96]

1. Connect start and goal to roadmap

Query processing
start

goal

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal
 - regenerate plans for edges in roadmap

Primitives Required:
1.  Method for Sampling points in C-Space
2.  Method for `validating’ points in C-Space

More PRMS
PRMs: Pros

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough
preprocessing

Many success stories where PRMs solve previously
unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

9

More PRMS
PRMs: Pros

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough
preprocessing

Many success stories where PRMs solve previously
unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

PRMs: Cons

1. PRMs don’t work as well for some problems:
–  unlikely to sample nodes in narrow passages
–  hard to sample/connect nodes on constraint surfaces

start

goal

C-obst

C-obst

C-obst

C-obst

Sampling Around Obstacles
[Amato et al 98]

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
•  most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle surfaces?
•  we cannot explicitly construct the C-obstacles...
•  we do have models of the (workspace) obstacles...

OBPRM Roadmap

OBPRM: Finding points on C-obstacles

1

3

2

4
5

Basic Idea (for workspace obstacle S)
1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
approaches to try to cover C-obstacle

C-obst

Repairing Paths [Amato et al]
Even with the best sampling methods, roadmaps
may not contain valid solution paths
•  may lack points in narrow passages
•  may contain approximate paths that are nearly valid

C-obstacle

C-obstacle
approximate

path

10

Repairing Paths [Amato et al]

1.  Create initial roadmap
2.  Extract approximate path P
3.  Repair P (push to C-free)

  Focus search around P
  Use OBPRM-like techniques

Even with the best sampling methods, roadmaps
may not contain valid solution paths
•  may lack points in narrow passages
•  may contain approximate paths that are nearly valid

Repairing/Improving Approximate Paths
C-obstacle

C-obstacle
approximate

path

repaired
path

