6.141:

Robotics systems and science

Lecture 11: Configuration Space and
Motion Planning

Lecture Notes Prepared by Daniela Rus
EECS/MIT
Spring 2009
Figures by Nancy Amato, Rodney Brooks, Vijay Kumar
Reading: Chapter 3, and Craig: Robotics

http://courses.csail.mit.edu/6.141/
Challenge: Build a Shelter on Mars

Announcements

= Sign up for debates by Wed April 1 by sending email
to bryt@csail.mit.edu

= Great Debaters (and pizza): Wed April 1 at 5:30pm
(save date, location 32-D463, rsvp to Bryt)

= Read about 8 course debates at

http://courses.csail.mit.edu/6.141/spring2009/pub/
debates/Debates.html

Note: See Syllabus for Debate Slots

Deliberative Architecture

2 Weeks Ago

= |_Lo=meQabout the world

Map, Localize Last Week

= | Clopmemure pf the world

This week

e~f01nt controllers/drivers
ities, joint torques

Motion Planning

Trajectory Generator

smooth trajectory

Calibration

Localization

Controller

Signals to joint controllers/drivers

IRobot motors, sensors|
+ External world

During the last module we saw

= Control architectures: reactive,
behavior, deliberative

= Visibility Graphs for Motion Planning
= Configuration Space
= Localization

Today

= Understand c-space
= Motion planning with grids
= Probabilistic motion planning

Transforming to C-Space

Sha < Spatial 2 Shape
pe <& interaction - P

Transform to
equivalent simpler

problem Higher
dimension
V < Spatial R /
Point interaction < Shape

Simpler problem

C-space Overview

* robot maps to a pointin higher
@ dimensional space
@@ « parameter for each degree of freedom
(dof) of robot
« C-space = set of all robot placements
« C-obstacle = infeasible robot placements

C-Space
® v
3D C-space i
(x,,2) o 3D C-space
(cByy)
6D C-space

2n-D C-space

(x.y,z,pitch,roll,yaw) (@0 0o W -4 G W01)

C-obstacle Example

Transforming to C-Space

al oal
gj}c @ g.
s\
-
start‘ start
Q *

C-obstacle
for fixed robot orientation

What if the robot can rotate?

Kobt

What if the robot can rotate? How do we compute C-space

= Identify dimensions
= Compute all c-obstacles

How do we compute c-obstacles? C-space Algorithm

Step 1: Reflect Robot

Step 2: Minkowski sum with reflected robot

C-space Algorithm

N

Step 2: Vert (©ORobot) ©Vert (Obstacle)

C-space Algorithm

Step 3: ConvexHull (Vert (- Robot) + Vert (Obstacle))

Convex Hull Algorithm

How do we compute convex hulls?

Configuration Space with Rotations

How do we compute this?

C-obstacle with Rotations

simple 2D workspace obstacle
=> complicated 3D C-obstacle

Figure from Latombe'91

Motion Planning Algorithm

(1) Compute c-obstacle for each obstacle
(Reflect points, Minkowsky sums, convex hull)
(2) Find path from start to goal for point robot

= The robots DOF dictate (1)

= The method for (2) differentiates among motion
planning algorithms

Motion Planning Summary

B

Workspace

A robot o robot

Path is swept volume Path is 1D curve

How do we find the path?
Recall Visibility Graphs

_——
N

[

2

N

In 2D the V-graph method finds the shortest path from S to G
What about 3D?

|
\i Figure from Latombe 91

How hard is this to compute?
The Complexity of Motion Plannin

Most motion planning problems are PSPACE-hard

[Reif 79, Hopcroft et al. 84 & 86]

The best deterministic algorithm known has running
time that is exponential in the dimension of the robot’s
C-space [Canny 86]

* C-space has high dimension - 6D for rigid body in 3-space

- simple obstacles have complex C-obstacles mmmp impractical to compute
explicit representation of freespace for high dof robots

So ... attention has turned to approximation and
randomized algorithms which

« trade full completeness of the planner
« for a major gain in efficiency

Exact Cell Decomposition
for finding path

Searching the Convex Cells
for finding path

Build graph
Search for path

Approximate Cell Decomposition

. full

D mixed

- - - -

Cell Conn

ectivity Graph

D empty

- full l:‘ mixed

o1
KO

OFOHO

O empty

Probabilistic Road Maps (PRM)
for finding paths [Kavraki at al 96]

C-space

Primitives Required:

Roadmap Construction (Pre-processing)
1. Randomly generate robot configurations (nodes)
- discard nodes that are invalid

2. Connect pairs of nodes to form roadmap
- simple, deterministic Jocal planner (e.g., straightline)
- discard paths that are invalid

Query processin

1. Connect start and goal to roadmap
2. Find path in roadmap between start and goal
- regenerate plans for edges in roadmap

1. Method for Sampling points in C-Space
2. Method for “validating’ points in C-Space

More PRMS

o

N

‘&

PRMs: Pros
1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough
preprocessing

Many success stories where PRMs solve previously
unsolved problems

More PRMS

. ogod . PRMs: Pros
1. PRMs are probabilistically complete
2] 2. PRMs apply easily to high-dimensional C-space

3. PRMs support fast queries w/ enough

o
. preprocessing
<

Many success stories where PRMs solve previously
unsolved problems

3 LS I
-~ al o3 PRMs: Cons
¢ .
1

. 1. PRMs don’'t work as well for some problems:
— unlikely to sample nodes in narrow passages

-obs

o
°
.

— hard to sample/connect nodes on constraint surfaces

oe

start

Sampling Around Obstacles
[Amato et al 98]

To Navigate Narrow Passages we must sample in them
» most PRM nodes are where planning is easy (not needed)

PRM Roadmap OBPRM Roadmap
ST e

b ° oall [y \goal|
o °
) >
°
-obs
o
-obs -obs
o
» Poe
°
-

Idea: Can we sample nodes near C-obstacle surfaces?
« we cannot explicitly construct the C-obstacles...
» we do have models of the (workspace) obstacles...

OBPRM: Finding points on C-obstacles

Basic Idea (for workspace obstacle S)
1. Find a point in S’s C-obstacle
(robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
using binary search (collision checks)

Note: we can use more sophisticated
approaches to try to cover C-obstacle

Repairing Paths [Amato et al]

Even with the best sampling methods, roadmaps
may not contain valid solution paths

* may lack points in narrow passages

* may contain approximate paths that are nearly valid

-obstacle

l

approximate
path

Repairing Paths [Amato et al]

Even with the best sampling methods, roadmaps
may not contain valid solution paths

» may lack points in narrow passages

» may contain approximate paths that are nearly valid

Repairing/Improving Approximate Paths

1. Create initial roadmap
2. Extract approximate path P
3. Repair P (push to C-free)
= Focus search around P
= Use OBPRM-like techniques

repaired

approximate
path

10

