
1

System Engineering
and Testing Strategies

RSS Lecture 4
Tuesday, 17 February 2009

Prof. Seth Teller

My Goals Today

• Discuss system engineering from an
intellectual and practical standpoint

• Introduce a "toolkit" of ideas and • Introduce a toolkit of ideas and
techniques that you can adopt in
your own engineering endeavors

• Get you thinking about your own
useful engineering practices

Caveat Auscultator (Listener beware)

• Some of this material will be new
to you; some will be familiar
– It doesn’t hurt to hear things twice.

• Some things you will probably agree
with; some things you probably won't
–But surely you’re used to this by now.

What is Engineering?
• Engineering (n.) (Merriam-Webster Online)

– a: the application of science and mathematics by
which the properties of matter and the sources of
energy in nature are made useful to peoplegy p p

– b: the design and manufacture of complex
products

• Does science + math + usefulness +
complexity capture all of engineering?

2

What is Engineering?

• Engineering (n.)

The process of specifying, designing,
implementing, and validating physical p g, g p y
artifacts with a desired set of properties

(With “properties” construed broadly to
mean material attributes, rigid and artic-
ulated DOFS, appearance, behavior, …)

Process View

• Engineering is a Means …
–Specifying: describing what to make
–Designing: describing how to make it
– Implementing: realizing actual artifactp g g
–Validating: convincing yourself (and

others) that artifact works as specified

• … to an End
–Namely: artifact with desired behavior

Human View
• Engineers are people who:

–Conceive of and execute ways to
optimize an underspecified tradeoff
between possibly conflicting goals

• … subject to physical constraints:
–Natural: Laws of physics, i.e., reality

• … and social constraints:
–Cultural: Law, morality, ethics …

Conception & Execution
• Conception:

–A mental model of artifact, constraints,
and assumptions about environment

• Execution:
–Putting the mental model into practice
–Observing whether it predicts behavior

under real-world conditions (and
whether env’t assumptions are justified)

3

Essence of Engineering …
• … Process is the (typically iterative)

–Formation of a mental model
– Implementation of a prototype artifact
–Observation of its behavior, leading to:, g

• Revision of designer’s operative mental model
• Revision of current design or implementation
• (Or both)

• … Until desired behavior is achieved

Consequences of Anomalies
• If it “looks wrong” to you, two possibilities:

EITHER:

– A) Artifact behavior really is wrong, in which case:
• Artifact has deviated from your mental model
• You can find some instance of deviation, and correct it

OR:OR:

– B) Artifact behavior is as designed, in which case:
• Your mental model made it “look wrong” to you
• Thus your mental model must be revised!

• If things “look wrong,” it’s an opportunity to
– Improve the system’s behavior, or
– Learn something, i.e.,

improve your mental model!

… And if it looks correct?
• Is it correct?

• Sure, it often is correct. But that doesn’t
mean that it always is or has to be correct!

• Can boil these ideas down to an aphorism:
– “Don’t sweep anomalies under the rug.”

– In other words, anomalous behavior presents
a great opportunity to learn something!

Documentation: JavaDocs
• JavaDocs comprise:

–Declarations
–Comments } for some code corpus

• Can help match mental models, but…
• … teammates’ agreement to make

the code implement the intent
stated in the comments essentially
amounts to a social contract

4

Strategy
• Predict and test

• Rather than “Hmm, now that I have
edited the code, let’s see what
happens”

• Predict outcome of well-defined test
• Perform the test, evaluate outcome
• Simple, systematic approach

Team mental models
• This strategy can be pursued by an

individual, or by an entire team

• Also useful for resolving discrepancies
in mental models within a team

• How?

• Inexhaustible source of experiments

Self-Checking Code
• Idea: make machine work for you

• For each algorithm/module, write
a “checker” that inspects its output
for the properties that it should have

• … same idea applies to input!
–Postconditions (A) == Preconditions (B)

Teammate-Checking Code
• Twist: for each module you write,

ask a teammate to write checker
• Multiple benefits:

–Validates your solution (as before)Validates your solution (as before)
–Decreases chance that checker succeeds

due to an invalid assumption (why?)
–Facilitates agreement of your mental

model with your teammate’s model
–Exploits a natural human characteristic:

competitiveness (s/he acts as adversary)

5

Caution
• Make sure your checking, reporting,

witness etc. code has no side effects
that enable correct algorithm function

• Otherwise, when you remove or
suppress self-test, bugs may emerge

• Examples?

Adversary
• Someone/something that tries to

–Find holes in your correctness proof
(e.g. as A did for R & S of RSA security)

–Produce inputs that break your code
(e.g., by violating your assumptions)

–Produce conditions that break system
(more than just program’s formal input)

• Adversary can be a person, program,
or a carefully-designed environment

Adversary’s Strategies
• Generate challenging inputs …

– Exhaustively
– Randomly
– Qualitatively
– Deviously (e.g., provoke a teammate to do it)Deviously (e.g., provoke a teammate to do it)

• … and environmental conditions:
– Missing or mis-wired connectors
– Misbehaving sensors
– Depressed all-stop buttons
– Undefined environment variables
– Misconfigured networks, remote hosts, etc.

Self-Checking Summary

• Pit each module against itself.

• Aphorism: “Make each module
 it lf b f t t it ”prove itself before you trust it.”

6

Test Harness
• Battery of test cases applied to a

system to validate its responses

• We’ve seen these in “software only”• We ve seen these in software only
systems, with “soft-copy only” inputs

• But what about robotics? How can
we validate sensors and actuators
using only software? … We can’t!

Robotics is Different!
• Robots are subject to “hard state”

fundamentally not under s/w control
• Consider dependence of proprioceptive

(e.g., odometry, IMU) and extero-(e.g., odometry, IMU) and extero
ceptive (e.g., sonar) sensors – fallible?

• Actuators pose analogous problems
• Simulation can be useful, but …
• Real world is the only way to enforce

absolute consistency of env’t, state

Example
• Bot commands forward motion, but

wall ahead of us isn’t getting closer!
• Many possible explanations:

–Motor driver is malfunctioningMotor driver is malfunctioning
–Wheels are loose (shaft is spinning)
–Robot is stuck (wheels are slipping)
–Encoders are on the fritz (hardware)
–Encoder handler is buggy (software)
–… Something’s moving the wall away!

Robotics Test Harness
• Place robot in a known environment

… thus actions have known outcomes
• For concreteness, imagine harness for:

–OdometryOdometry
–Motor drivers
–Bump sensors
–Visual servoing
–Arm driver
–Gripper sense

7

Self-Checking Summary (cont.)

• Pit system against known
environment.

A h i (F) • Aphorism (Feynman):
“You can’t fool Mother Nature.”

Transparency of Live State
• Make live system state graphically

visible (at least while debugging)
–Generalizes print statements (& more fun)

Benefits of State Visualization

• Exposes otherwise hidden system state
• Exploits high-bandwidth visual system
• Speeds iterative development cycle

h bl l• Increases achievable complexity
• Useful for communicating results

–To teammates (for matching models)
–To others (for demos, presentations…)

Hierarchical Testing
• Idea underlying all CS: Abstraction

... Can view any system or subsystem
as a black box, or examine its innards

• This suggests a recursive test strategy:
Ch k th t hi h l l b h i i t–Check that high-level behavior is correct

–Otherwise, examine submodules in turn:
EITHER:

… some submodule is operating incorrectly
OR:

… submodules are correct, but something
is wrong with interconnection semantics

8

Longitudinal Testing

• Running over long time scales, spatial
excursions may expose vulnerabilities:
–Memory leaks, desynchronization,

insufficient buffering, drift, decalibration…g, ,

• Longer runs increase the likelihood of
encountering “good” conditions/inputs

• Course challenge requires repeated
runs of 10-15 minutes (good practice!)

Consider Pair Programming

• Treat programming as an actual
collaborative activity among peers

• One person types, the other person
constructively comments questionsconstructively comments, questions

• Trade roles with some frequency
• Prompts useful design discussions
• Shortens design iteration dramatically
• Try it!

General Comments

• You’ve heard it all before
– “Think before you code”

• My variation on this:• My variation on this:
– “Validate as you design and implement”

• Tangible benefits in rapidity of proto-
typing & achievable complexity while
retaining confidence in correctness

Summary
• Engineering is about predictive power

• Primacy of mental models in testing
–Both individual and sharedBoth individual and shared

• Importance of transparent state

• Strategies for iterative design & test

• Potential of adversarial self-checking

