System Engineering
and Testing Strategies

RSS Lecture 4
Tuesday, 17 February 2009
Prof. Seth Teller

My Goals Today

= Discuss system engineering from an
intellectual and practical standpoint

= Introduce a "toolkit" of ideas and
techniques that you can adopt in
your own engineering endeavors

« Get you thinking about your own
useful engineering practices

Caveat AU SCU |tatOI’ (Listener beware)

= Some of this material will be new
to you; some will be familiar
— It doesn’t hurt to hear things twice.

= Some things you will probably agree
with; some things you probably won't
—But surely you're used to this by now.

What is Engineering?

(Merriam-Webster Online)

« Engineering (n.)

— a: the application of science and mathematics by
which the properties of matter and the sources of
energy in nature are made useful to people

— b: the design and manufacture of complex
products

e Does science + math + usefulness +
complexity capture all of engineering?




What is Engineering?
* Engineering (n.)

The process of specifying, designing,
implementing, and validating physical
artifacts with a desired set of properties

(With “properties” construed broadly to
mean material attributes, rigid and artic-
ulated DOFS, appearance, behavior, ...)

Process View

- Engineering is a Means ...
— Specifying: describing what to make
—Designing: describing how to make it
—Implementing: realizing actual artifact

—Validating: convincing yourself (and
others) that artifact works as specified

e .. toanEnd
—Namely: artifact with desired behavior

Human View

= Engineers are people who:

—Conceive of and execute ways to
optimize an underspecified tradeoff
between possibly conflicting goals

= ... subject to physical constraints:
—Natural: Laws of physics, i.e., reality

e ... and social constraints:
—Cultural: Law, morality, ethics ...

Conception & Execution

= Conception:

—A mental model of artifact, constraints,
and assumptions about environment

- Execution:
—Putting the mental model into practice

—Observing whether it predicts behavior
under real-world conditions (and
whether env’t assumptions are justified)




Essence of Engineering ...

e ... Process is the (typically iterative)
—Formation of a mental model
— Implementation of a prototype artifact
—Observation of its behavior, leading to:
« Revision of designer’s operative mental model
= Revision of current design or implementation
= (Or both)

= ... Until desired behavior is achieved

Consequences of Anomalies

e If it “looks wrong” to you, two possibilities:

e If things “look wrong,” it's an opportunity to

... And if it looks correct?
e |s it correct?

* Sure, it often is correct. But that doesn’t
mean that it always is or has to be correct!

e Can boil these ideas down to an aphorism:
— “Don’t sweep anomalies under the rug.”

— In other words, anomalous behavior presents
a great opportunity to learn something!

Documentation: JavaDocs

= JavaDocs comprise:

—Declarations
for some code corpus
—Comments

e Can help match mental models, but...

- ... teammates’ agreement to make
the code implement the intent
stated in the comments essentially
amounts to a social contract




Strategy

e Predict and test

e Rather than “Hmm, now that | have
edited the code, let's see what
happens”

* Predict outcome of well-defined test
« Perform the test, evaluate outcome
* Simple, systematic approach

Team mental models
= This strategy can be pursued by an
individual, or by an entire team

» Also useful for resolving discrepancies
in mental models within a team

e How?

< Inexhaustible source of experiments

Self-Checking Code

* Ildea: make machine work for you

* For each algorithm/module, write
a “checker” that inspects its output
for the properties that it should have

= ... same idea applies to input!
—Postconditions (A) == Preconditions (B)

Teammate-Checking Code

« Twist: for each module you write,
ask a teammate to write checker
e Multiple benefits:
—Validates your solution (as before)
—Decreases chance that checker succeeds
due to an invalid assumption (why?)
—Facilitates agreement of your mental
model with your teammate’s model
—Exploits a natural human characteristic:
competitiveness (s/he acts as adversary)




Caution

< Make sure your checking, reporting,
witness etc. code has no side effects
that enable correct algorithm function

* Otherwise, when you remove or
suppress self-test, bugs may emerge

e Examples?

Adversary

e Someone/something that tries to
—Find holes in your correctness proof
(e.g. as A did for R & S of RSA security)
—Produce inputs that break your code
(e.g., by violating your assumptions)
—Produce conditions that break system
(more than just program’s formal input)

= Adversary can be a person, program,
or a carefully-designed environment

Adversary’s Strategies

« Generate challenging inputs ...

— Exhaustively

— Randomly

— Qualitatively

— Deviously (e.g., provoke a teammate to do it)
< ... and environmental conditions:

— Missing or mis-wired connectors

— Misbehaving sensors

— Depressed all-stop buttons

— Undefined environment variables

— Misconfigured networks, remote hosts, etc.

Self-Checking Summary

» Pit each module against itself.

* Aphorism: “Make each module
prove itself before you trust it.”




Test Harness

« Battery of test cases applied to a
system to validate its responses

* We’'ve seen these in “software only”
systems, with “soft-copy only” inputs

e But what about robotics? How can
we validate sensors and actuators
using only software?

Robotics is Different!

* Robots are subject to “hard state”
fundamentally not under s/w control

= Consider dependence of proprioceptive
(e.g., odometry, IMU) and extero-
ceptive (e.g., sonar) sensors — fallible?

= Actuators pose analogous problems
e Simulation can be useful, but ...

« Real world is the only way to enforce
absolute consistency of env’t, state

Example

e Bot commands forward motion, but
wall ahead of us isn’t getting closer!

= Many possible explanations:

Robotics Test Harness

« Place robot in a known environment
... thus actions have known outcomes

e For concreteness, imagine harness for:

—Odometry

—Motor drivers

—Bump sensors T
—Visual servoing Ej
—Arm driver

—Gripper sense




Self-Checking Summary (cont.)

= Pit system against known
environment.

* Aphorism (Feynman):
“You can’t fool Mother Nature.”

Transparency of Live State

= Make live system state graphically
visible (at least while debugging)
—Generalizes print statements (& more fun)

Benefits of State Visualization

= Exposes otherwise hidden system state
= Exploits high-bandwidth visual system
e Speeds iterative development cycle

« Increases achievable complexity

e Useful for communicating results

—To teammates (for matching models)
—To others (for demos, presentations...)

Hierarchical Testing
= Idea underlying all CS:

= This suggests a recursive test strategy:




Longitudinal Testing

= Running over long time scales, spatial

excursions may expose vulnerabilities:
—Memory leaks, desynchronization,

insufficient buffering, drift, decalibration...

« Longer runs increase the likelihood of

encountering “good” conditions/inputs

= Course challenge requires repeated
runs of 10-15 minutes (good practice!)

Consider Pair Programming

= Treat programming as an actual
collaborative activity among peers

* One person types, the other person
constructively comments, questions

= Trade roles with some frequency

« Prompts useful design discussions

« Shortens design iteration dramatically
e Try it!

General Comments

e You've heard it all before
—“Think before you code”

= My variation on this:
—“Validate as you design and implement”

* Tangible benefits in rapidity of proto-
typing & achievable complexity while
retaining confidence in correctness

Summary

* Engineering is about predictive power

* Primacy of mental models in testing
—Both individual and shared
« Importance of transparent state

= Strategies for iterative design & test

= Potential of adversarial self-checking




