Three-Dimensional Ray-Cast Pong

Richard Hughes Elizabeth Power!

Overview

- What is Pong?
 - Traditional Pong is a two-dimensional game that "simulates" table tennis. The player controls a paddle by moving it vertically on the left side of the screen to block the ball.
 - The goal is for the player to keep the ball from hitting the left side of the screen.

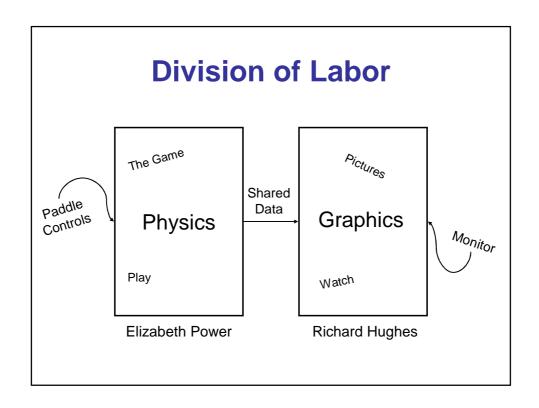
• Common variations...

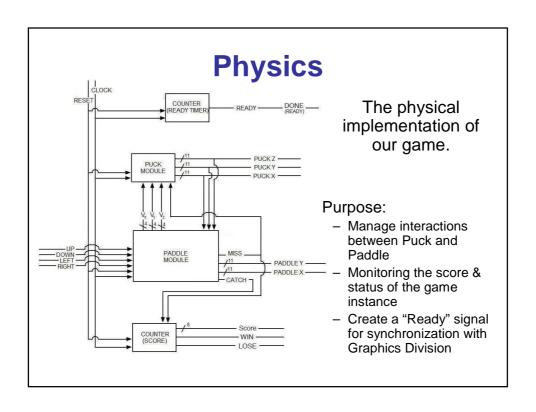
- 2 Player
 - Compete against a computer controlled opponent or another player which controls a second paddle on the right side of the screen
- Multiple Balls
 - Added complexity of having to keep track of 2 to 5 balls
- Pong Doubles and Elimination (aka Quadrapong)
 - Version for up to 4 Players
 - Each player starts with 4 points and looses one each time they miss the ball

- Doctor Pong (aka Puppy Pong)
 - An adoption for use in a non-coin-operated environment
 - Specifically used to occupy kids in doctors' waiting rooms.

Breakout

- · Pong with bricks
- A layer of bricks lines the top third of the screen and when the ball hits a brick, the ball bounces away and the brick is destroyed.


What Makes Our Pong Special?

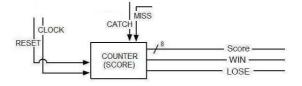

- 3-Dimensional
 - Functionally
 - Puck moves in x, y, and z directions
 - Paddle moves in x and y directions
 - Graphically
 - Walls are shaped and shaded to look more realistic
 - Puck is shaded to look like a sphere
 - Paddle shaded to have a elliptical surface (if time permits)

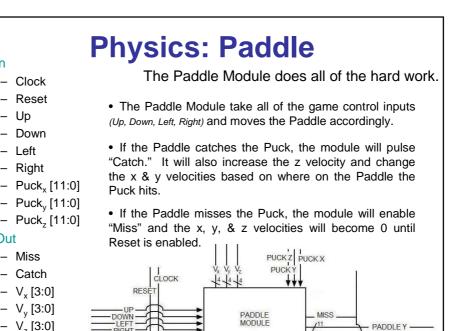
- Each time you catch the ball its speed increases
- The reflection angle changes based on where on the paddle you catch the ball
- Multiple balls (if time permits)
- Keeps score
 - Reach 63 to win



Physics: Ready

In order to reduce synchronization issues between the Physics & Graphic Divisions, the Physics Division will create a "Ready" signal for the Graphics to use.




Physics: Score

- The Score Module keeps track of the status of the game. In
 - Catch
 - Miss
 - Clock

Score [7:0]

- Reset
- Out
 - Win
 - Lose
- It counts how many times the paddle "catches" the puck and outputs that as the score.
- It also decides and tells you when you win or lose.

PADDLE X

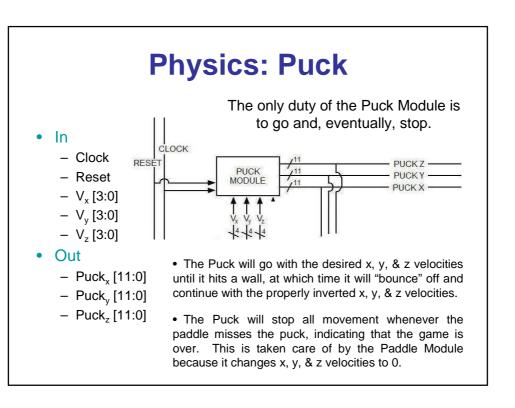
In

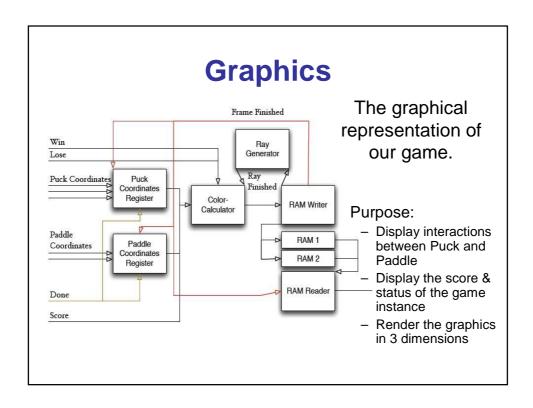
Clock Reset

Up

– Down

Left


Right

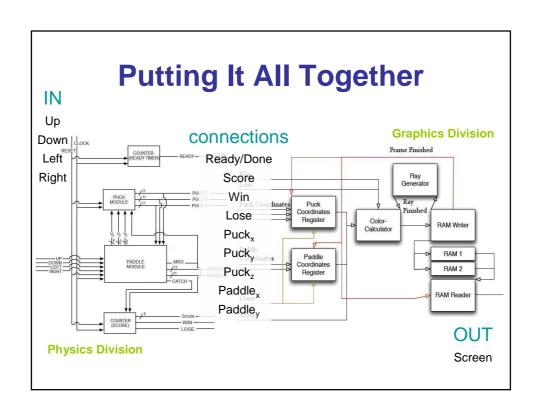

Out

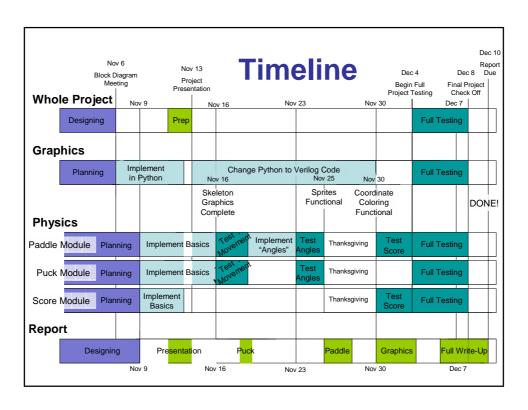
- Miss

Catch V_x [3:0] V_{v} [3:0] V_z [3:0]

 Paddle_x [11:0] Paddle_v [11:0]

Graphics: Implementation


- Ray-Casting
 - Phong is for suckers
 - Distance & Position functions are for winners
- The Hard Part: Division
 - 5x division for 5x planes
 - 1x division for ray-generation
 - 1x division for sphere intersection


Graphics: Integer Math

- How much fixed-point precision?
 - Python tests indicate:
 - 10 bits is too few to accurately intersect the sphere
 - 12 bits is sufficient.
- How many bits do we need?
 - 12 bits 'to the right of the decimal point'
- · How many bits left of the decimal point?
 - Multiplication makes enormous numbers
 - doubling # of bits
 - Keep the excess in registers in appropriate locations
 - Alter the precision with left-right shifts to keep scale appropriate.

Graphics: Keeping things 3D

- Without phong shading, how do we ensure that I'm not faking it?
 - Coordinate-function coloring.
 - Color of plane: $P(x,y,z,s_x,s_y,s_z)$
 - Color of sphere: $S(s_X, s_Y, s_Z)$

Testing Issues

- · Testing Without the Other Division
 - Graphics Division
 - Use randomly generated values for Puck and Paddle locations and the Score
 - · Use the clock to generate the ready signal
 - Physics Division
 - Use ModelSim to simulate parts of the game before the graphics are ready
- Modular Cooperation
 - Creation of "Skeleton" Graphs
 - Implemented by November 16
 - Provides Physics the ability to control the Paddle and visibly watch the Puck / Paddle interactions
 - Lengthy "Total Testing Time"
 - We have set aside almost a full week to ensure that the two divisions function properly together

Summary

- Complex Physics
- Ray-Casting Graphics
- VGA Resolution
- 30+ fps
- Mouse &/or Keyboard Support (if time permits)