MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Introductory Digital Systems Laboratory

Fall 2008

Lecture PSet \#5
Due: Thu, 09/23/08
Problem 1. (Katz, problem 8.13) A finite state machine has one input and one output. The output becomes 1 and remains 1 thereafter when at least two 0's and two 1's have occurred as inputs, regardless of the order of appearance.

Assuming this is to be implemented as a Moore machine, draw a state transition diagram for the machine. Hint: You can do this in nine states.

Problem 2. FSMs are often used to generate sequences of waveforms necessary to communicate with a component. Older memory chips (DRAMs) required several control signals to be asserted in a particular sequence to perform a memory read. The following figure shows a control module and the waveforms it must generate in response to a read request:

The module sits idle with $\mathrm{RAS}=1$, $\mathrm{MUX}=0$ and $\mathrm{CAS}=1$ until it detects $\mathrm{REQ}=1$ on the rising edge of CLK. In the first cycle of the request it should assert RAS $=0$, in the second cycle $\mathrm{MUX}=1$ and in the third cycle $\mathrm{CAS}=0$. These signals are held during the fourth cycle and return to their idle values in the fifth cycle. The module then waits for a new request; it ignores requests made while in the middle of processing the last request.
(A) Draw a state transition diagram for a FSM that will generate the appropriate sequence of signals.
(B) Write the Verilog for the module, choosing a state encoding and providing the appropriate combinational logic for generating the next state and output signals.

