MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Introductory Digital Systems Laboratory

Fall 2008

Lecture PSet \#2
Due: Thu, 09/11/08
Problem 1. A certain function F has the following truth table:

A	B	C	F
$========$	$===$		
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

(A) Write a sum-of-products expression for F .
(B) Write a minimal sum-of-products expression for F (use Karnaugh maps). Show a combinational circuit that implements F using only INV and NAND gates.
(C) Implement F using one 4-input MUX and one inverter.
(D) Write a minimal sum-of-products expression for NOT(F).

Problem 2.

(A) Give minimal sum-of-products expressions for each of the following $F=\overline{A+B}$
$G=A \cdot B \cdot C+\bar{A} \cdot B \cdot C+\bar{A} \cdot \bar{B} \cdot C+\bar{A} \cdot B \cdot \bar{C}+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}$
(B) What is the maximum number of product terms in a minimal sum-of-products expression with 3 variables?
(C) True or false: A Boolean function of N variables with greater than $2^{\mathrm{N}-1}$ product terms can always be simplified to an expression using fewer product terms.
(D) Suppose the stockroom is very low on components has only five 2-input NAND gates on hand. Would we be able to buid an implementation of any arbitrary 2input Boolean function?

Problem 3. A certain 3-input function $G(A, B, C)$ has the implementation shown to the right. Give a minimal sum-of-products expression for G.

Problem 4. (Katz, problem 4.9) Implement the 2-bit adder function (i.e., 2-bit binary number AB plus 2-bit binary number CD yields a 3-bit result XYZ) using three 8:1 multiplexers.
(A) Give the truth table showing the values for the outputs X, Y and Z given all possible combinations of the inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(B) Show how to implement X, Y and Z using three 8:1 multiplexers. You can assume you have the constants 0 and 1 , along with the inputs and their complements.

