MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Introductory Digital Systems Laboratory Fall 2008

Lecture PSet #2 *Due: Thu, 09/11/08*

Problem 1. A certain function F has the following truth table:

А	В	С		F	
==	===	===	=	===	=
0	0	0		1	
0	0	1		0	
0	1	0		0	
0	1	1		1	
1	0	0		1	
1	0	1		1	
1	1	0		0	
1	1	1		1	

- (A) Write a sum-of-products expression for F.
- (B) Write a minimal sum-of-products expression for F (use Karnaugh maps). Show a combinational circuit that implements F using only INV and NAND gates.
- (C) Implement F using one 4-input MUX and one inverter.
- (D) Write a minimal sum-of-products expression for NOT(F).

Problem 2.

- (A) Give minimal sum-of-products expressions for each of the following $F = \overline{A + B}$ $G = A \cdot B \cdot C + \overline{A} \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$
- (B) What is the maximum number of product terms in a minimal sum-of-products expression with 3 variables?
- (C) True or false: A Boolean function of N variables with greater than 2^{N-1} product terms can *always* be simplified to an expression using fewer product terms.
- (D) Suppose the stockroom is very low on components has only *five* 2-input NAND gates on hand. Would we be able to buid an implementation of any arbitrary 2-input Boolean function?

(see other side)

Problem 3. A certain 3-input function G(A,B,C) has the implementation shown to the right. Give a minimal sum-of-products expression for G.

Problem 4. (Katz, problem 4.9) Implement the 2-bit adder function (i.e., 2-bit binary number AB plus 2-bit binary number CD yields a 3-bit result XYZ) using three 8:1 multiplexers.

- (A) Give the truth table showing the values for the outputs X, Y and Z given all possible combinations of the inputs A, B, C and D.
- (B) Show how to implement X, Y and Z using three 8:1 multiplexers. You can assume you have the constants 0 and 1, along with the inputs and their complements.