

Analog Building Blocks

- Sampling theorem
- Undersampling, antialiasing
- FIR digital filters
- Quantization noise, oversampling
- OpAmps, DACs, ADCs

Lab #3 report due on-line @ 5pm today.

Digital Representations of Analog Waveforms

Continuous time Continuous values

 $\mathbf{\bigcup}$

Discrete time Discrete values

Discrete Time

Let's use an impulse train to sample a continuous-time function at a regular interval T:

Reconstruction

Is it possible to reconstruct the original waveform using only the discrete time samples?

$$x_p(t) \longrightarrow \mathbb{R}_p \longrightarrow x(t)$$

Sampling Theorem

Let x(t) be a band-limited signal, ie, X(jw)=0 for $|w| > w_M$. Then x(t) is uniquely determined by its samples x(nT), $n = 0, \pm 1, \pm 2, ...,$ if

w_s > 2w_M

 $2\omega_{M} \text{ is called the} \\ "Nyquist rate" and \\ \omega_{s}/2 \text{ the "Nyquist} \\ frequency"$

where

 $\omega_s = \frac{2\pi}{T}$

Given these samples, we can reconstruct x(t) by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample values, then passing the train through an ideal LPF with gain T and a cutoff frequency greater than w_M and less than w_s - w_M .

Undersampling \rightarrow Aliasing

If $w_s \leq 2w_M$ there's an overlap of frequencies between one image and its neighbors and we discover that those overlaps introduce additional frequency content in the sampled signal, a phenomenon called aliasing.

There are now tones at 1 (= 6 - 5) and 4 (= 6 - 2) in addition to the original tones at 2 and 5.

Antialias Filters

If we wish to create samples at some fixed frequency w_s , then to avoid aliasing we need to use a low-pass filter on the original waveform to remove any frequency content $\geq w_s/2$.

The frequency response of human ears essentially drops to zero above 20kHz. So the "Red Book" standard for CD Audio chose a 44.1kHz sampling rate, yielding a Nyquist frequency of 22.05kHz. The 2kHz of elbow room is needed because practical antialiasing filters have finite slope...

Why 44.1kHz? See http://www.cs.columbia.edu/~hgs/audio/44.1.html

Digital Filters

Equation for an N-tap finite impulse response (FIR) filter:

What components are part of the t_{PD} of this circuit? How does t_{PD} grow as N gets larger?

Filter coefficients

- Use Matlab command: b = fir1(N, $\omega_c/(\omega_s/2)$)
 - N is the number of taps (we'll get N+1 coefficients). Larger N gives sharper roll-off in filter response; usually want N to be as large as reasonably possible.
 - ω_c is the cutoff frequency (3kHz in Lab 4)
 - ω_s is the sample frequency (48kHz in Lab 4)
 - The second argument to the fir1 command is the cutoff frequency as a fraction of the Nyquist frequency (i.e., half the sample rate).
 - By default you get a lowpass filter, but can also ask for a highpass, bandpass, bandstop.
- The b coefficients are real numbers between 0 and 1. But since we don't want to do floating point arithmetic, we usually scale them by some power of two and then round to integers.
 - Since coefficients are scaled by 2⁵, we'll have to re-scale the answer by dividing by 2⁵. But this is easy - just get rid of the bottom S bits!

Retiming the FIR circuit

Apply the cut-set retiming transformation repeatedly...

Retimed FIR filter circuit

"Transposed Form" of a FIR filter

What components are part of the t_{PD} of this circuit? How does t_{PD} grow as N gets larger?

N-tap FIR: less hardware, N+1 cycles...

Finally: result in sum

Lab 4 overview

About 11 seconds of speech @ 6KHz

AC97: PCM data

Lab 4 w/ FIR filter

• Since we're down-sampling by a factor of 8, to avoid aliasing (makes the recording sound "scratchy") we need to pass the incoming samples through a low-pass antialiasing filter to remove audio signal above 3kHz (Nyquist frequency of a 6kHz sample rate).

• We need a low-pass reconstruction filter (the same filter as for antialiasing!) when playing back the 6kHz samples. Actually we'll run it at 48kHz and achieve a 6kHz playback rate by feeding it a sample, 7 zeros, the next sample, 7 more zeros, etc.

Discrete Values

If we use N bits to encode the magnitude of one of the discrete-time samples, we can capture 2^{N} possible values.

So we'll divide up the range of possible sample values into 2^N intervals and choose the index of the enclosing interval as the encoding for the sample value.

Quantization Error

Note that when we quantize the scaled sample values we may be off by up to $\pm \frac{1}{2}$ step from the true sampled values.

Quantization Noise

SNR: Signal-to-Noise Ratio

$$SNR = 10\log_{10}\left(\frac{P_{SIGNAL}}{P_{NOISE}}\right) = 10\log_{10}\left(\frac{A_{SIGNAL}^2}{A_{NOISE}^2}\right) = 20\log_{10}\left(\frac{A_{SIGNAL}}{A_{NOISE}}\right)$$

$$\swarrow RMS \text{ amplitude}$$

SNR is measured in decibels (dB). Note that it's a logarithmic scale: if SNR increases by 3dB the ratio has increased by a factor 2. When applied to audible sounds: the ratio of normal speech levels to the faintest audible sound is 60-70 dB.

Oversampling

To avoid aliasing we know that ω_s must be at least $2\omega_M$. Is there any advantage to oversampling, i.e., $w_s = K \cdot 2w_M$? Suppose we look at the frequency spectrum of $SNR_{\omega_s} = 10\log_{10}\left(\frac{P_{SIGNAL}}{P_{NOISE}}\right)$ quantized samples of a sine α wave: (sample freq. = ω_s) $\omega_{a}/2$ Total signal+noise power remains the same, so SNR is unchanged. But noise Let's double the sample is spread over twice the freq. range so frequency to $2\omega_{s}$. it's relative level has dropped. $\alpha/2$... $2(\omega_{\rm c}/2)$ Now let's use a low pass filter to eliminate half the noise! $SNR_{2\omega_s} = 10\log_{10}\left(\frac{P_{SIGNAL}}{P_{NOISE}/2}\right) = SNR_{\omega_s} + 3dB$ Note that we're not affecting the signal at all... $\alpha/2$ $\omega_s/2$ Oversampling+LPF reduces noise by 3dB/octave Lecture 10

Our Analog Building Block: OpAmp

Very small input range for "open loop" configuration

The Power of (Negative) Feedback

- Overall (closed loop) gain does not depend on open loop gain
- Trade gain for robustness
- Easier analysis approach: "virtual short circuit approach"
 - $v_{+} = v_{-} = 0$ if OpAmp is linear

Basic OpAmp Circuits

6.111 Fall 2008

Lecture 10

OpAmp as a Comparator

Analog Comparator:

Is V+ > V-? The Output is a DIGITAL signal

Analog Comparator: Analog to TTL LM 311 Needs Pull–Up

Digital to Analog

- Common metrics:
 - Conversion rate DC to ~500 MHz (video)
 - # bits up to ~24
 - Voltage reference source (internal / external; stability)
 - Output drive (unipolar / bipolar / current) & settling time
 - Interface parallel / serial
 - Power dissipation
- Common applications:
 - Real world control (motors, lights)
 - Video signal generation
 - Audio / RF "direct digital synthesis"
 - Telecommunications (light modulation)
 - Scientific & Medical (ultrasound, ...)

DAC: digital to analog converter

How can we convert a N-bit binary number to a voltage?

R-2R Ladder achieves large current division ratios with only two resistor values

Non-idealities in Data Conversion

Offset - a constant voltage offset that appears at the output when the digital input is 0

Integral Nonlinearity – maximum deviation from the ideal analog output voltage

Gain error - deviation of slope from ideal value of 1

Differential nonlinearity - the largest increment in analog output for a 1-bit change

Labkit: ADV7125 Triple Out Video DAC

Glitching and Thermometer D/A

- Glitching is caused when switching times in a D/A are not synchronized
- Example: Output changes from 011 to 100 - MSB switch is delayed
- Filtering reduces glitch but • increases the D/A settling time
- One solution is a thermometer • code D/A - requires $2^{N} - 1$ switches but no ratioed currents

$$v_{out} \land 011 \rightarrow 100$$

Binary		Thermometer		
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

Successive-Approximation A/D

- D/A converters are typically compact and easier to design. Why not A/D convert using a D/A converter and a comparator?
- DAC generates analog voltage which is compared to the input voltage
- If DAC voltage > input voltage then set that bit; otherwise, reset that bit
- This type of ADC takes a fixed amount of time proportional to the bit length

Successive-Approximation A/D

Serial conversion takes a time equal to $N(t_{D/A} + t_{comp})$

Flash A/D Converter

- Brute-force A/D conversion
- Simultaneously compare the analog value with every possible reference value
- Fastest method of A/D conversion
- Size scales exponentially with precision

(requires 2^N comparators)

http://www.analog.com/Analog_Root/static/techSupport/designTools/interactiveTools/sdtutorial/sdtutorial.html

So, what's the big deal?

- Can be run at high sampling rates, oversampling by, say, 8 or 9 octaves for audio applications; low power implementations
- Feedback path through the integrator changes how the noise is spread across the sampling spectrum.

• Pushing noise power to higher frequencies means more noise is eliminated by LPF: N^{th} order $\Sigma\Delta$ SNR = (3+N*6)dB/octave

Sigma Delta ADC

• A simple ADC:

Poor Man's ADC:

