
Multipliers & Pipelining 
•  Combinational multiplier 
•  Two’s complement multiplier 
•  Smaller multipliers, faster multipliers 
•  Latency & Throughput 
•  Pipelining to increase throughput 
•  Retiming 
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Lab #3 due tonight, report next Tuesday, no LPSets this week 



A0 A1 A2 A3 
B0 B1 B2 B3 

A0B0 A1B0 A2B0 A3B0 
A0B1 A1B1 A2B1 A3B1 

A0B2 A1B2 A2B2 A3B2 
A0B3 A1B3 A2B3 A3B3 

x 

+ 

ABi called a “partial product” 

Multiplying N-bit number by M-bit number gives (N+M)-bit result 

Easy part: forming partial products  
             (just an AND gate since BI is either 0 or 1) 
Hard part: adding M N-bit partial products 

Unsigned Multiplication 
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Combinational Multiplier (unsigned) 
                        X3   X2   X1   X0 
                     *  Y3   Y2   Y1   Y0 
                     -------------------- 
                      X3Y0 X2Y0 X1Y0 X0Y0 
+                X3Y1 X2Y1 X1Y1 X0Y1 
+           X3Y2 X2Y2 X1Y2 X0Y2 
+      X3Y3 X2Y3 X1Y3 X0Y3 
----------------------------------------- 
    Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0 

HA 

x3 

FA 

x2 

FA 

x1 

FA 

x2 

FA 

x1 

HA 

x0 

FA 

x1 

HA 

x0 

HA 

x0 

FA 

x3 

FA 

x2 

FA 

x3 

x3 x2 x1 x0 

z0 

z1 

z2 

z3 z4 z5 z6 z7 

y3 

y2 

y1 

y0 

  Propagation delay ~2N 

multiplicand 
multiplier 

Partial products, one for each bit in 
multiplier (each bit needs just one 
AND gate) 
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Combinational Multiplier (signed!) 
                        X3   X2   X1   X0 
                     *  Y3   Y2   Y1   Y0 
                     -------------------- 
  X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 
----------------------------------------- 
    Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0 

x3 

FA 

x2 

FA 

x1 

FA 

x2 

FA 

x1 

FA 

x0 

FA 

x1 

HA 

x0 

HA 

x0 

FA 

x3 

FA 

x2 

FA 

x3 

x3 x2 x1 x0 

z0 

z1 

z2 

z3 z4 z5 z6 z7 

y3 

y2 

y1 

y0 

FA FA FA 

FA 

FA 

FA 

FA 

1 NB: There are tricks we 
can use to eliminate the 
extra circuitry we 
added… 
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2’s Complement Multiplication 

                        X3   X2   X1   X0 
                     *  Y3   Y2   Y1   Y0 
                     -------------------- 
  X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 
----------------------------------------- 
    Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0 

                      X3Y0 X2Y0 X1Y0 X0Y0 
+                X3Y1 X2Y1 X1Y1 X0Y1 
+           X2Y2 X1Y2 X0Y2 
+      X3Y3 X2Y3 X1Y3 X0Y3 
+    1              1 

Step 1: two’s complement operands so high 
order bit is –2N-1.  Must sign extend partial 
products and subtract the last one 

Step 2: don’t want all those extra additions, so 
add a carefully chosen constant, remembering 
to subtract it at the end. Convert subtraction 
into add of (complement + 1). 

Step 3: add the ones to the partial 
products and propagate the carries.  All the 
sign extension bits go away! 

Step 4: finish computing the constants… 

Result: multiplying 2’s complement operands 
takes just about same amount of hardware as 
multiplying unsigned operands! 

                      X3Y0 X2Y0 X1Y0 X0Y0 
+                X3Y1 X2Y1 X1Y1 X0Y1 
+           X2Y2 X1Y2 X0Y2 
+      X3Y3 X2Y3 X1Y3 X0Y3 
+                        1 
-         1    1    1    1 

  X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 
+                        1 
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 
+                   1 
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 
+              1 
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 
+                        1 
+         1 
-         1    1    1    1 

–B = ~B + 1 

(Baugh-Wooley) 
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2’s Complement Multiplication 

FA 

x3 

FA 

x2 

FA 

x1 

FA 

x2 

FA 

x1 

HA 

x0 

FA 

x1 

HA 

x0 

HA 

x0 

FA 

x3 

FA 

x2 

FA 

x3 

HA 

1 

1 

x3 x2 x1 x0 

z0 

z1 

z2 
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y3 

y2 
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y0 
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Multiplication in Verilog 
You can use the “*” operator to multiply two numbers: 

wire [9:0] a,b; 
wire [19:0] result = a*b;   // unsigned multiplication! 

If you want Verilog to treat your operands as signed two’s 
complement numbers, add the keyword signed to your wire or 
reg declaration:  

wire signed [9:0] a,b; 
wire signed [19:0] result = a*b;  // signed multiplication! 

Remember: unlike addition and subtraction, you need different 
circuitry if your multiplication operands are signed vs. unsigned.  
Same is true of the >>> (arithmetic right shift) operator.  To get 
signed operations all operands must be signed. 

To make a signed constant: 10’sh37C 
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Multiplication on the FPGA 
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In the XC2V6000: 6 columns of mults, 24 in each column = 144 mults 

Hardware multiplier block: two 18-bit twos complement (signed) operands 

tPD ≈ 10ns 



Sequential Multiplier 

Assume the multiplicand (A) has N bits and the
 multiplier (B) has M bits.  If we only want to invest in a
 single N-bit adder, we can build a sequential circuit
 that processes a single partial product at a time and
 then cycle the circuit M times: 

A P B 

+ 

SN 

NC 

N 
xN 

N 

N+1 

SN-1…S0 
Init: P←0, load A and B 

Repeat M times { 
   P ← P + (BLSB==1 ? A : 0) 
   shift P/B right one bit 
} 

Done: (N+M)-bit result in P/B 

M bits 

LSB 

1 
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Bit-Serial Multiplication 

P 

FA C 

0 

A B 

Init: P = 0; Load A,B 

Repeat M times { 
  Repeat N times { 
    shift A,P: 
    Amsb = Alsb 
    Pmsb = Plsb + Alsb*Blsb + C/0 
  } 
  shift P,B: Pmsb = C, Bmsb = Plsb 
} 

(N+M)-bit result in P/B 
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Useful building block: Carry-Save Adder 

Last stage is still a carry-propagate adder (CPA) 

Good for pipelining: delay 
through each partial product 
(except the last) is just 
 tPD,AND + tPD,FA.   
No carry propagation time! 

CSA 
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Wallace Tree Multiplier 

CSA CSA CSA 

CSA 

... 

CSA 

CSA 

CSA 

CPA 

O(log1.5M) 

Higher fan-in adders can be used
 to further reduce delays for
 large M. 

Wallace Tree:  
Combine groups of
 three bits at a time 

This is called a 3:2 
counter by multiplier 
hackers: counts 
number of 1’s on the 
3 inputs, outputs 2-
bit result. 

4:2 compressors and 5:3 
counters are popular 
building blocks. 
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Multiplication by a constant 
•  If one of the operands is a constant, make it the multiplier (B in

 the earlier examples).  For each “1” bit in the constant we get a
 partial product (PP) – may be noticeably fewer PPs than in the
 general case. 

–  For example, in general multiplying two 4-bit operands generates
 four PPs (requiring 3 rows of full adders).  If the multiplier is say,
 12 (4’b1100), then there are only two PPs: 8*A+4*A (requiring only 1
 row of full adders). 

–  But lots of “1”s means lots of PPs… can we improve on this? 
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•  If we allow ourselves to subtract PPs as well as adding them (the
 hardware cost is virtually the same), we can  re-encode
 arbitrarily long contiguous runs of “1” bits in the multiplier to
 produce just two PPs. 

       …011110… = …100000… - …000010… = …0100010… 

where 1 indicates subtracting a PP instead of adding it.  Thus we’ve re
-encoded the multiplier using 1,0,-1 digits – aka canonical signed digit –
 greatly reducing the number of additions required. 



Booth Recoding: Higher-radix mult. 

 AN-1   AN-2   …   A4   A3   A2   A1   A0  
           BM-1   BM-2 …   B3   B2    B1   B0 x 

... 

2 M/2 

BK+1,K*A = 0*A → 0 
             = 1*A → A 
             = 2*A → 4A – 2A 
             = 3*A → 4A – A 

Idea: If we could use, say, 2 bits of the multiplier in generating each
 partial product we would halve the number of rows and halve the
 latency of the multiplier! 

Booth’s insight: rewrite
 2*A and 3*A cases, leave
 4A for next partial
 product to do!  
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Booth recoding 

BK+1 

0 
0 
0 
0 
1 
1 
1 
1 

BK 

0 
0 
1 
1 
0 
0 
1 
1 

BK-1 

0 
1 
0 
1 
0 
1 
0 
1 

action 

add 0 
add A 
add A 

add 2*A 
sub 2*A 
sub A 
sub A 
add 0 

A “1” in this bit means the previous stage
 needed to add 4*A.  Since this stage is shifted
 by 2 bits with respect to the previous stage,
 adding 4*A in the previous stage is like adding
 A in this stage! 

-2*A+A 

-A+A 

from previous bit pair current bit pair 
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On-the-fly canonical signed digit encoding! 



Sequential Divider 
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Assume the Dividend (A) and the divisor (B) have N bits.  If we
 only want to invest in a single N-bit adder, we can build a
 sequential circuit that processes a single subtraction each cycle
 and then cycle the circuit N times.  This circuit works on
 unsigned operands; for signed operands one can remember the
 signs, make operands positive, then correct sign of result. 

B P A 

- 

S 

N+1 N+1 

N+1 

Init: P←0, load A and B 
Repeat N times { 
   shift P/A left one bit 
   temp = P-B 
   if (temp > 0) 
     {P←temp, ALSB←1} 
   else ALSB←0 
} 
Done: Q in A, R in P 

N bits 

LSB 

>0? S 

S 0 1 



Performance Metrics for Circuits 

time between arrival of new input and generation 
of corresponding output. 

For combinational circuits this is just tPD. 

Circuit Latency (L): 

Rate at which new outputs appear. 

For combinational circuits this is just 1/tPD or 1/L. 

Circuit Throughput (T): 
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Performance of Combinational Circuits 

F 

G 

H X P(X) 

For combinational logic: 
   L = tPD,  
   T = 1/tPD.   

We can’t get the answer faster,
 but are we making effective use
 of our hardware at all times? 

G(X) 
F(X) 

P(X) 

X 

F & G are “idle”, just holding their outputs
 stable while H performs its computation 

6.111 Fall 2008 18 Lecture 9 



Retiming is the action of moving registers around in the system 
  Registers have to be moved from ALL inputs to ALL outputs or vice versa 

Retiming: A very useful transform 

Cutset retiming: A cutset intersects the edges, such that this would result in two
 disjoint partitions of the edges being cut. To retime, delays are moved  from the
 ingoing to the outgoing edges or vice versa. 

Benefits of retiming:  
•  Modify critical path delay 
•  Reduce total number of registers 
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Retiming Combinational Circuits 
aka “Pipelining” 

P(X) 

15 

20 

25 X 

L = 45 
T = 1/45 

P(Xi-2) 

15 

20 

25 Xi 

tCLK = 25 
L = 2*tCLK = 50 
T = 1/tCLK = 1/25 

Assuming ideal registers: 
i.e., tPD = 0, tSETUP = 0 
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Pipeline diagrams 

Input 

F Reg 

G Reg 

H Reg 

i i+1 i+2 i+3 

Xi Xi+1 

F(Xi) 

G(Xi) 

Xi+2 

F(Xi+1) 

G(Xi+1) 

H(Xi) 

Xi+3 

F(Xi+2) 

G(Xi+2) 

H(Xi+1) 

Clock cycle 
Pi

pe
lin

e 
st

ag
es

 

The results associated with a particular set of input
 data moves diagonally through the diagram, progressing
 through one pipeline stage each clock cycle. 

H(Xi+2) 

… 

… 

F 

G 

H X P(X) 
15 

20 

25 
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Pipeline Conventions 
DEFINITION: 

a K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K
 registers on every path from an input to an output. 

a COMBINATIONAL CIRCUIT is thus an 0-stage pipeline. 

CONVENTION: 
Every pipeline stage, hence every K-Stage pipeline, has a register on its
 OUTPUT (not on its input). 

ALWAYS: 
The CLOCK common to all registers must have a period sufficient to
 cover propagation over combinational paths PLUS (input) register tPD
 PLUS (output) register tSETUP. 

The LATENCY of a K-pipeline is K times the period of
 the clock common to all registers. 

The THROUGHPUT of a K-pipeline is the frequency of
 the clock. 
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Ill-formed pipelines 

B 

C X 

Y 

A 

Problem: 
Successive inputs get mixed: e.g., B(A(Xi+1), Yi).  This
 happened because some paths from inputs to outputs
 have 2 registers, and some have only 1! 
This CAN’T HAPPEN on a well-formed K pipeline! 

none For what value of K is the following circuit a K-Pipeline? ________ 

Consider a BAD job of pipelining: 

2 1 
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A pipelining methodology 
Step 1: 
Add a register on each output. 

Step 2: 
Add another register on each 
output.  Draw a cut-set contour 
that includes all the new 
registers and some part of the 
circuit.  Retime by moving regs 
from all outputs to all inputs of 
cut-set. 

Repeat until satisfied with T. 

STRATEGY: 
 Focus your attention on 
placing pipelining registers 
around the slowest circuit 
elements (BOTTLENECKS). 

A 
4 nS 

B 
3 nS 

C 
8 nS 

D 
4 nS 

E 
2 nS 

F 
5 nS 

T = 1/8ns 
L = 24ns 
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Pipeline Example 

A 

B 

C X 

Y 

2 

1 

1 

0-pipe: 
LATENCY THROUGHPUT 

4 1/4 

OBSERVATIONS: 
• 1-pipeline improves

 neither L or T. 
• T improved by breaking

 long combinational
 paths, allowing faster
 clock. 

• Too many stages cost L,
 don’t improve T. 

• Back-to-back registers
 are often required to
 keep pipeline well
-formed. 

1-pipe: 4 1/4 

1 

2-pipe: 4 1/2 

2 

2 

3-pipe: 1/2 6 

3 

3 
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Increasing Throughput: Pipelining 

= register 

Idea: split processing across 
several clock cycles by dividing 
circuit into pipeline stages 
separated by registers that hold 
values passing from one stage to 
the next. 

Throughput = 1/4tPD,FA instead of 1/8tPD,FA) 
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How about tPD = 1/2tPD,FA? 
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= register 


