
Multipliers & Pipelining
•  Combinational multiplier
•  Two’s complement multiplier
•  Smaller multipliers, faster multipliers
•  Latency & Throughput
•  Pipelining to increase throughput
•  Retiming

6.111 Fall 2008 1 Lecture 9

Lab #3 due tonight, report next Tuesday, no LPSets this week

A0 A1 A2 A3
B0 B1 B2 B3

A0B0 A1B0 A2B0 A3B0
A0B1 A1B1 A2B1 A3B1

A0B2 A1B2 A2B2 A3B2
A0B3 A1B3 A2B3 A3B3

x

+

ABi called a “partial product”

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Easy part: forming partial products
 (just an AND gate since BI is either 0 or 1)
Hard part: adding M N-bit partial products

Unsigned Multiplication

6.111 Fall 2008 2 Lecture 9

Combinational Multiplier (unsigned)
 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3 z4 z5 z6 z7

y3

y2

y1

y0

  Propagation delay ~2N

multiplicand
multiplier

Partial products, one for each bit in
multiplier (each bit needs just one
AND gate)

6.111 Fall 2008 3 Lecture 9

Combinational Multiplier (signed!)
 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

x3

FA

x2

FA

x1

FA

x2

FA

x1

FA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3 z4 z5 z6 z7

y3

y2

y1

y0

FA FA FA

FA

FA

FA

FA

1 NB: There are tricks we
can use to eliminate the
extra circuitry we
added…

6.111 Fall 2008 4 Lecture 9

2’s Complement Multiplication

 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1 1

Step 1: two’s complement operands so high
order bit is –2N-1. Must sign extend partial
products and subtract the last one

Step 2: don’t want all those extra additions, so
add a carefully chosen constant, remembering
to subtract it at the end. Convert subtraction
into add of (complement + 1).

Step 3: add the ones to the partial
products and propagate the carries. All the
sign extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands
takes just about same amount of hardware as
multiplying unsigned operands!

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1
- 1 1 1 1

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ 1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+ 1
+ 1
- 1 1 1 1

–B = ~B + 1

(Baugh-Wooley)

6.111 Fall 2008 5 Lecture 9

2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3 z4 z5 z6 z7

y3

y2

y1

y0

6.111 Fall 2008 6 Lecture 9

Multiplication in Verilog
You can use the “*” operator to multiply two numbers:

wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!

If you want Verilog to treat your operands as signed two’s
complement numbers, add the keyword signed to your wire or
reg declaration:

wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!

Remember: unlike addition and subtraction, you need different
circuitry if your multiplication operands are signed vs. unsigned.
Same is true of the >>> (arithmetic right shift) operator. To get
signed operations all operands must be signed.

To make a signed constant: 10’sh37C

6.111 Fall 2008 7 Lecture 9

Multiplication on the FPGA

6.111 Fall 2008 Lecture 9 8

In the XC2V6000: 6 columns of mults, 24 in each column = 144 mults

Hardware multiplier block: two 18-bit twos complement (signed) operands

tPD ≈ 10ns

Sequential Multiplier

Assume the multiplicand (A) has N bits and the
 multiplier (B) has M bits. If we only want to invest in a
 single N-bit adder, we can build a sequential circuit
 that processes a single partial product at a time and
 then cycle the circuit M times:

A P B

+

SN

NC

N
xN

N

N+1

SN-1…S0
Init: P←0, load A and B

Repeat M times {
 P ← P + (BLSB==1 ? A : 0)
 shift P/B right one bit
}

Done: (N+M)-bit result in P/B

M bits

LSB

1

6.111 Fall 2008 9 Lecture 9

Bit-Serial Multiplication

P

FA C

0

A B

Init: P = 0; Load A,B

Repeat M times {
 Repeat N times {
 shift A,P:
 Amsb = Alsb
 Pmsb = Plsb + Alsb*Blsb + C/0
 }
 shift P,B: Pmsb = C, Bmsb = Plsb
}

(N+M)-bit result in P/B

6.111 Fall 2008 10 Lecture 9

Useful building block: Carry-Save Adder

Last stage is still a carry-propagate adder (CPA)

Good for pipelining: delay
through each partial product
(except the last) is just
 tPD,AND + tPD,FA.
No carry propagation time!

CSA

6.111 Fall 2008 11 Lecture 9

Wallace Tree Multiplier

CSA CSA CSA

CSA

...

CSA

CSA

CSA

CPA

O(log1.5M)

Higher fan-in adders can be used
 to further reduce delays for
 large M.

Wallace Tree:
Combine groups of
 three bits at a time

This is called a 3:2
counter by multiplier
hackers: counts
number of 1’s on the
3 inputs, outputs 2-
bit result.

4:2 compressors and 5:3
counters are popular
building blocks.

6.111 Fall 2008 12 Lecture 9

Multiplication by a constant
•  If one of the operands is a constant, make it the multiplier (B in

 the earlier examples). For each “1” bit in the constant we get a
 partial product (PP) – may be noticeably fewer PPs than in the
 general case.

–  For example, in general multiplying two 4-bit operands generates
 four PPs (requiring 3 rows of full adders). If the multiplier is say,
 12 (4’b1100), then there are only two PPs: 8*A+4*A (requiring only 1
 row of full adders).

–  But lots of “1”s means lots of PPs… can we improve on this?

6.111 Fall 2008 Lecture 9 13

•  If we allow ourselves to subtract PPs as well as adding them (the
 hardware cost is virtually the same), we can re-encode
 arbitrarily long contiguous runs of “1” bits in the multiplier to
 produce just two PPs.

 …011110… = …100000… - …000010… = …0100010…

where 1 indicates subtracting a PP instead of adding it. Thus we’ve re
-encoded the multiplier using 1,0,-1 digits – aka canonical signed digit –
 greatly reducing the number of additions required.

Booth Recoding: Higher-radix mult.

 AN-1 AN-2 … A4 A3 A2 A1 A0
 BM-1 BM-2 … B3 B2 B1 B0 x

...

2 M/2

BK+1,K*A = 0*A → 0
 = 1*A → A
 = 2*A → 4A – 2A
 = 3*A → 4A – A

Idea: If we could use, say, 2 bits of the multiplier in generating each
 partial product we would halve the number of rows and halve the
 latency of the multiplier!

Booth’s insight: rewrite
 2*A and 3*A cases, leave
 4A for next partial
 product to do!

6.111 Fall 2008 14 Lecture 9

Booth recoding

BK+1

0
0
0
0
1
1
1
1

BK

0
0
1
1
0
0
1
1

BK-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage
 needed to add 4*A. Since this stage is shifted
 by 2 bits with respect to the previous stage,
 adding 4*A in the previous stage is like adding
 A in this stage!

-2*A+A

-A+A

from previous bit pair current bit pair

6.111 Fall 2008 15 Lecture 9

On-the-fly canonical signed digit encoding!

Sequential Divider

6.111 Fall 2008 Lecture 9 16

Assume the Dividend (A) and the divisor (B) have N bits. If we
 only want to invest in a single N-bit adder, we can build a
 sequential circuit that processes a single subtraction each cycle
 and then cycle the circuit N times. This circuit works on
 unsigned operands; for signed operands one can remember the
 signs, make operands positive, then correct sign of result.

B P A

-

S

N+1 N+1

N+1

Init: P←0, load A and B
Repeat N times {
 shift P/A left one bit
 temp = P-B
 if (temp > 0)
 {P←temp, ALSB←1}
 else ALSB←0
}
Done: Q in A, R in P

N bits

LSB

>0? S

S 0 1

Performance Metrics for Circuits

time between arrival of new input and generation
of corresponding output.

For combinational circuits this is just tPD.

Circuit Latency (L):

Rate at which new outputs appear.

For combinational circuits this is just 1/tPD or 1/L.

Circuit Throughput (T):

6.111 Fall 2008 17 Lecture 9

Performance of Combinational Circuits

F

G

H X P(X)

For combinational logic:
 L = tPD,
 T = 1/tPD.

We can’t get the answer faster,
 but are we making effective use
 of our hardware at all times?

G(X)
F(X)

P(X)

X

F & G are “idle”, just holding their outputs
 stable while H performs its computation

6.111 Fall 2008 18 Lecture 9

Retiming is the action of moving registers around in the system
  Registers have to be moved from ALL inputs to ALL outputs or vice versa

Retiming: A very useful transform

Cutset retiming: A cutset intersects the edges, such that this would result in two
 disjoint partitions of the edges being cut. To retime, delays are moved from the
 ingoing to the outgoing edges or vice versa.

Benefits of retiming:
•  Modify critical path delay
•  Reduce total number of registers

6.111 Fall 2008 19 Lecture 9

Retiming Combinational Circuits
aka “Pipelining”

P(X)

15

20

25 X

L = 45
T = 1/45

P(Xi-2)

15

20

25 Xi

tCLK = 25
L = 2*tCLK = 50
T = 1/tCLK = 1/25

Assuming ideal registers:
i.e., tPD = 0, tSETUP = 0

6.111 Fall 2008 20 Lecture 9

Pipeline diagrams

Input

F Reg

G Reg

H Reg

i i+1 i+2 i+3

Xi Xi+1

F(Xi)

G(Xi)

Xi+2

F(Xi+1)

G(Xi+1)

H(Xi)

Xi+3

F(Xi+2)

G(Xi+2)

H(Xi+1)

Clock cycle
Pi

pe
lin

e
st

ag
es

The results associated with a particular set of input
 data moves diagonally through the diagram, progressing
 through one pipeline stage each clock cycle.

H(Xi+2)

…

…

F

G

H X P(X)
15

20

25

6.111 Fall 2008 21 Lecture 9

Pipeline Conventions
DEFINITION:

a K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K
 registers on every path from an input to an output.

a COMBINATIONAL CIRCUIT is thus an 0-stage pipeline.

CONVENTION:
Every pipeline stage, hence every K-Stage pipeline, has a register on its
 OUTPUT (not on its input).

ALWAYS:
The CLOCK common to all registers must have a period sufficient to
 cover propagation over combinational paths PLUS (input) register tPD
 PLUS (output) register tSETUP.

The LATENCY of a K-pipeline is K times the period of
 the clock common to all registers.

The THROUGHPUT of a K-pipeline is the frequency of
 the clock.

6.111 Fall 2008 22 Lecture 9

Ill-formed pipelines

B

C X

Y

A

Problem:
Successive inputs get mixed: e.g., B(A(Xi+1), Yi). This
 happened because some paths from inputs to outputs
 have 2 registers, and some have only 1!
This CAN’T HAPPEN on a well-formed K pipeline!

none For what value of K is the following circuit a K-Pipeline? ________

Consider a BAD job of pipelining:

2 1

6.111 Fall 2008 23 Lecture 9

A pipelining methodology
Step 1:
Add a register on each output.

Step 2:
Add another register on each
output. Draw a cut-set contour
that includes all the new
registers and some part of the
circuit. Retime by moving regs
from all outputs to all inputs of
cut-set.

Repeat until satisfied with T.

STRATEGY:
 Focus your attention on
placing pipelining registers
around the slowest circuit
elements (BOTTLENECKS).

A
4 nS

B
3 nS

C
8 nS

D
4 nS

E
2 nS

F
5 nS

T = 1/8ns
L = 24ns

6.111 Fall 2008 24 Lecture 9

Pipeline Example

A

B

C X

Y

2

1

1

0-pipe:
LATENCY THROUGHPUT

4 1/4

OBSERVATIONS:
• 1-pipeline improves

 neither L or T.
• T improved by breaking

 long combinational
 paths, allowing faster
 clock.

• Too many stages cost L,
 don’t improve T.

• Back-to-back registers
 are often required to
 keep pipeline well
-formed.

1-pipe: 4 1/4

1

2-pipe: 4 1/2

2

2

3-pipe: 1/2 6

3

3

6.111 Fall 2008 25 Lecture 9

Increasing Throughput: Pipelining

= register

Idea: split processing across
several clock cycles by dividing
circuit into pipeline stages
separated by registers that hold
values passing from one stage to
the next.

Throughput = 1/4tPD,FA instead of 1/8tPD,FA)

6.111 Fall 2008 26 Lecture 9

How about tPD = 1/2tPD,FA?

6.111 Fall 2008 Lecture 9 27

= register

