
Arithmetic Circuits
•  Number representations
•  Addition, subtraction
•  Performance issues

-- ripple carry
-- carry bypass
-- carry skip
-- carry lookahead

6.111 Fall 2008 1 Lecture 8
Lab #3 due Thursday, report next Tuesday, no LPSets this week

Encoding numbers

∑
−

=
=

1n

0i
i

i b2v
211 210 29 28 27 26 25 24 23 22 21 20
0 1 1 1 1 1 0 1 0 0 0 0

03720

Octal - base 8

000 - 0
001 - 1
010 - 2
011 - 3
100 - 4
101 - 5
110 - 6
111 - 7

0x7d0

Hexadecimal - base 16

0000 - 0 1000 - 8
0001 - 1 1001 - 9
0010 - 2 1010 - a
0011 - 3 1011 - b
0100 - 4 1100 - c
0101 - 5 1101 - d
0110 - 6 1110 - e
0111 - 7 1111 - f

Oftentimes we will
 find it convenient to

 cluster groups of bits
 together for a more

 compact notation.
 Two popular groupings
 are clusters of 3 bits

 and 4 bits.

It is straightforward to encode positive integers as a sequence of bits.
 Each bit is assigned a weight. Ordered from right to left, these
 weights are increasing powers of 2. The value of an n-bit number
 encoded in this fashion is given by the following formula:

= 200010

Seems natural
to me!

0 2 7 3 0 d 7

6.111 Fall 2008 2 Lecture 8

•  Three common schemes:
–  sign-magnitude, ones complement, twos complement

•  Sign-magnitude: MSB = 0 for positive, 1 for negative
–  Range: -(2N-1 – 1) to +(2N-1 – 1)

–  Two representations for zero: 0000… & 1000…
–  Simple multiplication but complicated addition/subtraction

Binary Representation of Numbers

How to represent negative numbers?

_
•  Ones complement: if N is positive then its negative is N

–  Example: 0111 = 7, 1000 = -7

–  Range: -(2N-1 – 1) to +(2N-1 – 1)

–  Two representations for zero: 0000… & 1111…

–  Subtraction is addition followed by ones complement

6.111 Fall 2008 3 Lecture 8

Representing negative integers
To keep our arithmetic circuits simple, we’d like to find a representation
for negative numbers so that we can use a single operation (binary addition)
when we wish to find the sum of two integers, independent of whether they
are positive are negative.

We certainly want A + (-A) = 0. Consider the following 8-bit binary addition
where we only keep 8 bits of the result:

 11111111
 + 00000001
 00000000

which implies that the 8-bit representation of -1 is 11111111. More generally

 -A = 0 - A
 = (-1 + 1)- A
 = (-1 - A) + 1
 = ~A + 1

€

1 1 1 1 1 1 1 1
− A7 A6 A5 A4 A3 A2 A1 A0

A7 A6 A5 A4 A3 A2 A1 A0

~ means bit-wise complement

Negation:
Complement
and add 1

6.111 Fall 2008 4 Lecture 8

Signed integers: 2’s complement

20 21 22 23 … 2N-2 -2N-1 … …
N bits

8-bit 2’s complement example:
 11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s complement representation for signed integers,
 the same binary addition mod 2n procedure will work for adding
 positive and negative numbers (don’t need separate subtraction
 rules). The same procedure will also handle unsigned numbers!

By moving the implicit location of “decimal” point, we can represent
 fractions too:
 1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625

“sign bit” “decimal” point
Range: – 2N-1 to 2N-1 – 1

6.111 Fall 2008 5 Lecture 8

Sign extension

Consider the 8-bit 2’s complement representation of:

-5 = ~00000101 + 1
 = 11111010 + 1
 = 11111011

42 = 00101010

What is their 16-bit 2’s complement representation?

42 = ________00101010

-5 = ________11111011

42 = 0000000000101010

-5 = ________11111011

42 = 0000000000101010

-5 = 1111111111111011
Extend the MSB (aka the “sign bit”)
into the higher-order bit positions

6.111 Fall 2008 6 Lecture 8

Adder: a circuit that does addition
Here’s an example of binary addition as one might do it by “hand”:

1101
+ 0101
10010

1 0 1 1
Carries from previous
 column

Adding two N-bit
 numbers produces
 an (N+1)-bit result

If we build a circuit that implements one column:

we can quickly build a circuit two add two 4-bit numbers…

“Ripple-
 carry
 adder”

6.111 Fall 2008 7 Lecture 8

“Full Adder” building block
A B C S CO

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

€

S = A⊕ B⊕C

€

CO = ABC + ABC + ABC + ABC
= (A + A)BC + (B + B)AC + AB(C + C)
= BC + AC + AB

The “half adder”
circuit has only the
A and B inputs

6.111 Fall 2008 8 Lecture 8

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

~ = bit-wise complement

So let’s build an arithmetic unit that does both addition and
 subtraction. Operation selected by control input:

But what
 about the
 “+1”?

6.111 Fall 2008 9 Lecture 8

Condition Codes

Besides the sum, one often wants four other
 bits of information from an arithmetic unit: To compare A and B,

 perform A–B and use
condition codes:

Signed comparison:
 LT N⊕V
 LE Z+(N⊕V)
 EQ Z
 NE ~Z
 GE ~(N⊕V)
 GT ~(Z+(N⊕V))

Unsigned comparison:
 LTU ~C
 LEU ~C+Z
 GEU C
 GTU ~(~C+Z)

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates an add in the most
 significant position produced a carry,
 e.g., 1111 + 0001 from last FA

11 −⊕−= NCINNCOUTV

V (overflow): indicates that the answer
 has too many bits to be represented
 correctly by the result width, e.g.,
0111 + 0111

1 1 1 1 1 1 - - - +
- - - = N S N B N A N S N B N A V

6.111 Fall 2008 10 Lecture 8

Condition Codes in Verilog

6.111 Fall 2008 11 Lecture 8

Z (zero): result is = 0

N (negative): result is < 0

C (carry): indicates an add
 in the most significant
 position produced a carry,
 e.g., 1111 + 0001

V (overflow): indicates that
 the answer has too many
 bits to be represented
 correctly by the result
 width, e.g., 0111 + 0111

wire [31:0] a,b,s;
wire z,n,v,c;
assign {c,s} = a + b;
assign z = ~|s;
assign n = s[31];
assign v = a[31]^b[31]^s[31]^c;

Might be better to use sum-of-
products formula for V from previous
slide if using LUT implementation
(only 3 variables instead of 4).

Modular Arithmetic
The Verilog arithmetic operators (+,-,*) all produce full-precision
results, e.g., adding two 8-bit numbers produces a 9-bit result.

In many designs one chooses a “word size” (many computers use 32 or
64 bits) and all arithmetic results are truncated to that number of
bits, i.e., arithmetic is performed modulo 2word size.

Using a fixed word size can lead to overflow, e.g., when the operation
produces a result that’s too large to fit in the word size. One can

•  Avoid overflow: choose a sufficiently large word size
•  Detect overflow: have the hardware remember if an operation

produced an overflow – trap or check status at end
•  Embrace overflow: sometimes this is exactly what you want, e.g.,

when doing index arithmetic for circular buffers of size 2N.
•  “Correct” overflow: replace result with most positive or most

negative number as appropriate, aka saturating arithmetic. Good
for digital signal processing.

6.111 Fall 2008 12 Lecture 8

Speed: tPD of Ripple-carry Adder

Worse-case path: carry propagation from LSB to MSB,
 e.g., when adding 11…111 to 00…001.

CI to CO CIN-1 to SN-1

Θ(N) is read
 “order N” :
 means that the
 latency of our
 adder grows at
 worst in
 proportion to
 the number of
 bits in the
 operands.

tPD = (N-1)*(tPD,OR + tPD,AND) + tPD,XOR ≈ Θ(N)

6.111 Fall 2008 13 Lecture 8

How about the tPD of this circuit?

Is the tPD of this circuit = 2 * tPD,N-BIT RIPPLE ?

Cn-1 Cn-2 C2 C1 C0

Nope! tPD of this circuit = tPD,N-BIT RIPPLE + tPD,FA !!!

Timing analysis is tricky!

6.111 Fall 2008 14 Lecture 8

Faster carry logic
Let’s see if we can improve the speed by rewriting the equations for
 COUT:

COUT = AB + ACIN + BCIN

 = AB + (A + B)CIN

 = G + P CIN
where G = AB
 P = A + B

generate propagate

Actually, P is usually
defined as P = A^B
which won’t change
COUT but will allow us
to express S as a
simple function :
 S = P^CIN

A B

S

CIN COUT

6.111 Fall 2008 15 Lecture 8

module fa(input a,b,cin, output s,cout);
 wire g = a & b;
 wire p = a ^ b;
 assign s = p ^ cin;
 assign cout = g | (p & cin);
endmodule

Virtex II Adder Implementation

Y = A ⊕ B ⊕ CinA
B

Cin

CoutLUT: A⊕B

1 half-Slice = 1-bit adder

Dedicated carry logic

P

G

6.111 Fall 2008 16 Lecture 8

Virtex II Carry Chain

1 CLB = 4 Slices = 2, 4-bit adders
64-bit Adder: 16 CLBs

+

CLB15

CLB0 A[3:0]
B[3:0]

A[63:60]
B[63:60]

A[63:0]

B[63:0]
Y[63:0]

Y[3:0]

Y[63:60]

Y[64]

CLBs must be in same column

CLB1 A[7:4]
B[7:4] Y[7:4]

6.111 Fall 2008 17 Lecture 8

Carry Bypass Adder

C/S

P,G

Ci,0

P0 G0

A0 B0

Co,0
C/S

P,G
P1 G1

A1 B1

Co,1
C/S

P,G
P2 G2

A2 B2

Co,2
C/S

P,G
P3 G3

A3 B3

Co,3

Can compute P, G
in parallel for all bits

C/S

P,G

Ci,0

P0 G0

Co,0
C/S

P,G
P1 G1

Co,1
C/S

P,G
P2 G2

Co,2
C/S

P,G
P3 G3

0

1

BP= P0P1P2P3

Co,3

Key Idea: if (P0 P1 P2 P3) then Co,3 = Ci,0
6.111 Fall 2008 18 Lecture 8

16-bit Carry Bypass Adder

C/S

P,G

Ci,0

Co,0

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

C/S

P,G

Co,4

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P4P5P6P7

Co,5 Co,6

Co,7 C/S

P,G

Co,8

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P8P9P10P11

Co,9 Co,10

C/S

P,G

Co,11

Co,12

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P12P13P14P15

Co,13 Co,14

Co,15

Assume the following for delay each gate:
 P, G from A, B: 1 delay unit
 P, G, Ci to Co or Sum for a C/S: 1 delay unit
 2:1 mux delay: 1 delay unit

Co,3

What is the worst case propagation delay
 for the 16-bit adder?

6.111 Fall 2008 19 Lecture 8

Critical Path Analysis

C/S

P,G

Ci,0

Co,0

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

C/S

P,G

Co,4

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP2= P4P5P6P7

Co,5 Co,6

Co,7 C/S

P,G

Co,8

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP3= P8P9P10P11

Co,9 Co,10

C/S

P,G

Co,11

Co,12

C/S

P,G

C/S

P,G

C/S

P,G

0

1

BP4= P12P13P14P15

Co,13 Co,14

Co,15

Co,3

Message: Timing analysis is very tricky –
Must carefully consider data dependencies for false paths

6.111 Fall 2008 20 Lecture 8

Carry Bypass vs Ripple Carry

N

tadder

ripple adder

bypass adder

4..8

Ripple Carry: tadder = (N-1) tcarry + tsum

Carry Bypass: tadder = 2(M-1) tcarry + tsum + (N/M-1) tbypass

N = number
 of bits being
 added

M = bypass
 word size

6.111 Fall 2008 21 Lecture 8

Carry Lookahead Adder (CLA)

•  Recall that COUT = G + P CIN where G = A&B and P = A^B

CN = GN-1 + PN-1CN-1

 = GN-1 + PN-1 GN-2 + PN-1 PN-2CN-2

 = GN-1 + PN-1 GN-2 + PN-1 PN-2GN-3 + … + PN-1 ...P0CIN

•  For adding two N-bit numbers:

CN in only 3 gate delays* :
 1 for P/G generation, 1 for ANDs, 1 for final OR

•  Idea: pre-compute all carry bits as f(Gs,Ps,CIN)

*assuming gates with N inputs

6.111 Fall 2008 22 Lecture 8

Carry Lookahead Circuits

6.111 Fall 2008 23 Lecture 8

The 74182 Carry Lookahead Unit

6.111 Fall 2008 24 Lecture 8

Block Generate and Propagate
G and P can be computed for groups of bits (instead of just for
 individual bits). This allows us to choose the maximum fan-in
 we want for our logic gates and then build a hierarchical carry
 chain using these equations:

where I < J and J+1 < K

CJ+1 = GIJ + PIJCI

GIK = GJ+1,K + PJ+1,K GIJ

PIK = PIJ PJ+1,K

“generate a carry from bits I thru
K if it is generated in the high-order
 (J+1,K) part of the block or if it is
generated in the low-order (I,J) part
of the block and then propagated
thru the high part”

P/G generation

1st level of
lookahead

Hierarchical building block
6.111 Fall 2008 25 Lecture 8

8-bit CLA (P/G generation)

From Hennessy & Patterson, Appendix A

Log2(N)

6.111 Fall 2008 26 Lecture 8

8-bit CLA (carry generation)

Log2(N)

6.111 Fall 2008 27 Lecture 8

8-bit CLA (complete)

tPD = Θ(log(N))

6.111 Fall 2008 28 Lecture 8

