
Arithmetic Circuits 
•  Number representations 
•  Addition, subtraction 
•  Performance issues 

-- ripple carry 
-- carry bypass 
-- carry skip 
-- carry lookahead 
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Lab #3 due Thursday, report next Tuesday, no LPSets this week 



Encoding numbers 
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Octal - base 8 

000 - 0 
001 - 1 
010 - 2 
011 - 3 
100 - 4 
101 - 5 
110 - 6 
111 - 7 

0x7d0 

Hexadecimal - base 16 

0000 - 0   1000 - 8 
0001 - 1     1001 - 9 
0010 - 2    1010 - a 
0011 - 3     1011 - b 
0100 - 4     1100 - c 
0101 - 5     1101 - d 
0110 - 6     1110 - e 
0111 - 7     1111 - f 

Oftentimes we will
 find it convenient to

 cluster groups of bits
 together for a more

 compact notation.
 Two popular groupings
 are clusters of 3 bits

 and 4 bits. 

It is straightforward to encode positive integers as a sequence of bits.
 Each bit is assigned a weight. Ordered from right to left, these
 weights are increasing powers of 2. The value of an n-bit number
 encoded in this fashion is given by the following formula: 

= 200010 

Seems natural 
to me! 

0 2 7 3 0 d 7 
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•  Three common schemes:  
–  sign-magnitude, ones complement, twos complement 

•  Sign-magnitude: MSB = 0 for positive, 1 for negative 
–  Range: -(2N-1 – 1) to +(2N-1 – 1) 

–  Two representations for zero: 0000… & 1000… 
–  Simple multiplication but complicated addition/subtraction 

Binary Representation of Numbers 

How to represent negative numbers? 

_ 
•  Ones complement: if N is positive then its negative is N 

–  Example: 0111 = 7,  1000 = -7 

–  Range: -(2N-1 – 1) to +(2N-1 – 1) 

–  Two representations for zero: 0000… & 1111… 

–  Subtraction is addition followed by ones complement 
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Representing negative integers 
To keep our arithmetic circuits simple, we’d like to find a representation 
for negative numbers so that we can use a single operation (binary addition) 
when we wish to find the sum of two integers, independent of whether they 
are positive are negative. 

We certainly want A + (-A) = 0.  Consider the following 8-bit binary addition 
where we only keep 8 bits of the result: 

                    11111111 
                  + 00000001 
                    00000000 

which implies that the 8-bit representation of -1 is 11111111.  More generally 

               -A = 0 - A 
                  = (-1 + 1)- A 
                  = (-1 - A) + 1 
                  = ~A + 1 

€ 

1 1 1 1 1 1 1 1
− A7 A6 A5 A4 A3 A2 A1 A0

A7 A6 A5 A4 A3 A2 A1 A0

~ means bit-wise complement 

Negation: 
Complement 
and add 1 
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Signed integers: 2’s complement 

20 21 22 23 … 2N-2 -2N-1 … … 
N bits 

8-bit 2’s complement example: 
    11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42 

If we use a two’s complement representation for signed integers,
 the same binary addition mod 2n procedure will work for adding
 positive and negative numbers (don’t need separate subtraction
 rules).  The same procedure will also handle unsigned numbers! 

By moving the implicit location of “decimal” point, we can represent
 fractions too: 
    1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625 

“sign bit” “decimal” point 
Range: – 2N-1  to  2N-1 – 1 
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Sign extension 

Consider the 8-bit 2’s complement representation of: 

-5 = ~00000101 + 1 
   =  11111010 + 1 
   =  11111011 

42 = 00101010 

What is their 16-bit 2’s complement representation? 

42 = ________00101010 

-5 = ________11111011 

42 = 0000000000101010 

-5 = ________11111011 

42 = 0000000000101010 

-5 = 1111111111111011 
Extend the MSB (aka the “sign bit”) 
into the higher-order bit positions 
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Adder: a circuit that does addition 
Here’s an example of binary addition as one might do it by “hand”: 

1101 
+ 0101 
10010 

1 0 1 1 
Carries from previous
 column 

Adding two N-bit
 numbers produces
 an (N+1)-bit result 

If we build a circuit that implements one column: 

we can quickly build a circuit two add two 4-bit numbers… 

“Ripple-  
 carry   
 adder” 
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“Full Adder” building block 
A B C S CO 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

€ 

S = A⊕ B⊕C

€ 

CO = ABC + ABC + ABC + ABC
= (A + A)BC + (B + B)AC + AB(C + C)
= BC + AC + AB

The “half adder” 
circuit has only the 
A and B inputs 
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Subtraction: A-B = A + (-B) 

Using 2’s complement representation: –B = ~B + 1 

~ = bit-wise complement 

So let’s build an arithmetic unit that does both addition and
 subtraction.  Operation selected by control input: 

But what
 about the
 “+1”? 
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Condition Codes 

Besides the sum, one often wants four other
 bits of information from an arithmetic unit: To compare A and B, 

 perform A–B and use 
condition codes: 

Signed comparison: 
 LT  N⊕V 
 LE  Z+(N⊕V) 
 EQ  Z 
 NE  ~Z 
 GE  ~(N⊕V) 
 GT  ~(Z+(N⊕V)) 

Unsigned comparison: 
 LTU  ~C 
 LEU  ~C+Z 
 GEU  C 
 GTU  ~(~C+Z) 

Z (zero): result is = 0               big NOR gate 

N (negative): result is < 0          SN-1 

C (carry):  indicates an add in the most
 significant position produced a carry,
 e.g., 1111 + 0001                        from last FA 

11 −⊕−= NCINNCOUTV

V (overflow): indicates that the answer
 has too many bits to be represented
 correctly by the result width, e.g.,  
0111 + 0111 

1 1 1 1 1 1 - - - + 
- - - = N S N B N A N S N B N A V 
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Condition Codes in Verilog 

6.111 Fall 2008 11 Lecture 8 

Z (zero): result is = 0 

N (negative): result is < 0 

C (carry):  indicates an add
 in the most significant
 position produced a carry,
 e.g., 1111 + 0001 

V (overflow): indicates that
 the answer has too many
 bits to be represented
 correctly by the result
 width, e.g., 0111 + 0111 

wire [31:0] a,b,s; 
wire z,n,v,c; 
assign {c,s} = a + b; 
assign z = ~|s; 
assign n = s[31]; 
assign v = a[31]^b[31]^s[31]^c; 

Might be better to use sum-of-
products formula for V from previous 
slide if using LUT implementation 
(only 3 variables instead of 4). 



Modular Arithmetic 
The Verilog arithmetic operators (+,-,*) all produce full-precision 
results, e.g., adding two 8-bit numbers produces a 9-bit result. 

In many designs one chooses a “word size” (many computers use 32 or 
64 bits) and all arithmetic results are truncated to that number of 
bits, i.e., arithmetic is performed modulo 2word size.   

Using a fixed word size can lead to overflow, e.g., when the operation 
produces a result that’s too large to fit in the word size.  One can 

•  Avoid overflow: choose a sufficiently large word size 
•  Detect overflow: have the hardware remember if an operation 

produced an overflow – trap or check status at end 
•  Embrace overflow: sometimes this is exactly what you want, e.g., 

when doing index arithmetic for circular buffers of size 2N. 
•  “Correct” overflow: replace result with most positive or most 

negative number as appropriate, aka saturating arithmetic.  Good 
for digital signal processing. 

6.111 Fall 2008 12 Lecture 8 



Speed: tPD of Ripple-carry Adder 

Worse-case path: carry propagation from LSB to MSB,
 e.g., when adding 11…111 to 00…001. 

CI to CO CIN-1 to SN-1 

Θ(N) is read
 “order N” :
 means that the
 latency of our
 adder grows at
 worst in
 proportion to
 the number of
 bits in the
 operands. 

tPD = (N-1)*(tPD,OR + tPD,AND) + tPD,XOR   ≈ Θ(N) 
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How about the tPD of this circuit? 

Is the tPD of this circuit = 2 * tPD,N-BIT RIPPLE ? 

Cn-1 Cn-2 C2 C1 C0 

Nope! tPD of this circuit = tPD,N-BIT RIPPLE + tPD,FA !!! 

Timing analysis is tricky! 
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Faster carry logic 
Let’s see if we can improve the speed by rewriting the equations for
 COUT: 

COUT = AB + ACIN + BCIN 

        = AB + (A + B)CIN 

        = G + P CIN 
where G = AB 
           P = A + B 

generate propagate 

Actually, P is usually 
defined as P = A^B 
which won’t change 
COUT but will allow us 
to express S as a 
simple function : 
        S = P^CIN 

A B 

S 

CIN COUT 
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module fa(input a,b,cin, output s,cout); 
  wire g = a & b; 
  wire p = a ^ b; 
  assign s = p ^ cin; 
  assign cout = g | (p & cin); 
endmodule 



Virtex II Adder Implementation 

Y = A ⊕ B ⊕ CinA
B

Cin

CoutLUT: A⊕B

1 half-Slice = 1-bit adder

Dedicated carry logic 

P

G
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Virtex II Carry Chain 

1 CLB = 4 Slices = 2, 4-bit adders 
64-bit Adder: 16 CLBs 

+ 

CLB15 

CLB0 A[3:0] 
B[3:0] 

A[63:60] 
B[63:60] 

A[63:0] 

B[63:0] 
Y[63:0] 

Y[3:0] 

Y[63:60] 

Y[64] 

CLBs must be in same column 

CLB1 A[7:4] 
B[7:4] Y[7:4] 
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Carry Bypass Adder 

C/S 

P,G 

Ci,0 

P0 G0 

A0 B0 

Co,0 
C/S 

P,G 
P1 G1 

A1 B1 

Co,1 
C/S 

P,G 
P2 G2 

A2 B2 

Co,2 
C/S 

P,G 
P3 G3 

A3 B3 

Co,3 

Can compute P, G  
in parallel for all bits 

C/S 

P,G 

Ci,0 

P0 G0 

Co,0 
C/S 

P,G 
P1 G1 

Co,1 
C/S 

P,G 
P2 G2 

Co,2 
C/S 

P,G 
P3 G3 

0 

1 

BP= P0P1P2P3 

Co,3 

Key Idea: if (P0 P1 P2 P3) then Co,3 = Ci,0 
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16-bit Carry Bypass Adder 

C/S 

P,G 

Ci,0 

Co,0 

C/S 

P,G 

C/S 

P,G 

C/S 

P,G 

0 

1 

BP= P0P1P2P3 

Co,1 Co,2 

C/S 

P,G 

Co,4 

C/S 

P,G 

C/S 

P,G 

C/S 

P,G 

0 

1 

BP= P4P5P6P7 

Co,5 Co,6 

Co,7 C/S 

P,G 

Co,8 

C/S 

P,G 

C/S 

P,G 

C/S 

P,G 

0 

1 

BP= P8P9P10P11 

Co,9 Co,10 

C/S 

P,G 

Co,11 

Co,12 

C/S 

P,G 

C/S 

P,G 

C/S 

P,G 

0 

1 

BP= P12P13P14P15 

Co,13 Co,14 

Co,15 

Assume the following for delay each gate: 
  P, G from A, B: 1 delay unit 
  P, G, Ci to Co or Sum for a C/S: 1 delay unit 
  2:1 mux delay: 1 delay unit 

Co,3 

What is the worst case propagation delay
 for the 16-bit adder?  
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Critical Path Analysis 

C/S 

P,G 

Ci,0 

Co,0 

C/S 

P,G 

C/S 

P,G 

C/S 

P,G 

0 

1 

BP= P0P1P2P3 

Co,1 Co,2 

C/S 

P,G 

Co,4 

C/S 

P,G 

C/S 

P,G 

C/S 

P,G 

0 

1 

BP2= P4P5P6P7 

Co,5 Co,6 

Co,7 C/S 

P,G 

Co,8 

C/S 

P,G 

C/S 

P,G 

C/S 

P,G 

0 

1 

BP3= P8P9P10P11 

Co,9 Co,10 

C/S 

P,G 

Co,11 

Co,12 

C/S 

P,G 

C/S 

P,G 

C/S 

P,G 

0 

1 

BP4= P12P13P14P15 

Co,13 Co,14 

Co,15 

Co,3 

Message: Timing analysis is very tricky –  
Must carefully  consider data dependencies for false paths  
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Carry Bypass vs Ripple Carry 

N 

tadder 

ripple adder 

bypass adder 

4..8 

Ripple Carry:     tadder = (N-1) tcarry + tsum 

Carry Bypass:   tadder = 2(M-1) tcarry + tsum + (N/M-1) tbypass  

N = number
 of bits being
 added 

M = bypass
 word size 
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Carry Lookahead Adder (CLA) 

•  Recall that COUT = G + P CIN where G = A&B and P = A^B 

CN = GN-1 + PN-1CN-1 

     = GN-1 + PN-1 GN-2 + PN-1 PN-2CN-2 

     = GN-1 + PN-1 GN-2 + PN-1 PN-2GN-3 + … + PN-1 ...P0CIN 

•  For adding two N-bit numbers: 

CN in only 3 gate delays* : 
  1 for P/G generation, 1 for ANDs, 1 for final OR 

•  Idea: pre-compute all carry bits as f(Gs,Ps,CIN) 

*assuming gates with N inputs 
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Carry Lookahead Circuits 
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The 74182 Carry Lookahead Unit 
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Block Generate and Propagate 
G and P can be computed for groups of bits (instead of just for
 individual bits).  This allows us to choose the maximum fan-in
 we want for our logic gates and then build a hierarchical carry
 chain using these equations: 

where I < J and J+1 < K 

CJ+1 = GIJ + PIJCI 

GIK = GJ+1,K + PJ+1,K GIJ 

PIK = PIJ PJ+1,K  

“generate a carry from bits I thru 
K if it is generated in the high-order 
 (J+1,K) part of the block or if it is 
generated in the low-order (I,J) part 
of the block and then propagated 
thru the high part” 

P/G generation 

1st level of 
lookahead 

Hierarchical building block 
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8-bit CLA (P/G generation) 

From Hennessy & Patterson, Appendix A  

Log2(N) 
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8-bit CLA (carry generation) 

Log2(N) 
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8-bit CLA (complete) 

tPD = Θ(log(N)) 
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