
System Integration Issues 
•  Communicating FSMs 
•  Clocking, theory and practice 
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Toward FSM Modularity 
•  Consider the following abstract FSM: 

S0 

a1 

b1 c1 

d1 

S1 S2 S3 S4 S5 S6 S7 S8 S9 

a2 

b2 c2 

d2 a3 

b3 c3 

d3 

•  Suppose that each set of states ax...dx is a “sub-FSM” that produces exactly 
the same outputs. 

•  Can we simplify the FSM by removing equivalent states? 
        No!  The outputs may be the same, but the  
        next-state transitions are not. 

•  This situation closely resembles a procedure call or function call in 
software...how can we apply this concept to FSMs? 

Acknowledgements: Rex Min 
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The Major/Minor FSM Abstraction 

•  Subtasks are encapsulated in minor FSMs with common  
reset and clock 

•  Simple communication abstraction: 
–  START:  tells the minor FSM to begin operation (the call) 
–  BUSY:  tells the major FSM whether the minor is done (the return) 

•  The major/minor abstraction is great for... 
–  Modular designs (always a good thing) 
–  Tasks that occur often but in different contexts 
–  Tasks that require a variable/unknown period of time 
–  Event-driven systems 

Major FSM 

Minor FSM A 

Minor FSM B 

STARTA 

STARTB 

BUSYA 

BUSYB 
CLK 

RESET RESET 

CLK 
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Inside the Major FSM 

S1 
S2 

START S3 S4 ... 
BUSY BUSY 

BUSY 

BUSY 

BUSY BUSY 

1. Wait until
 the minor FSM

 is ready 

2. Trigger the
 minor FSM

 (and make sure
 it’s started) 

3. Wait until
 the minor FSM

 is done 

START 

BUSY 

Major FSM
 State S1 S2 S2 S3 S3 S3 S4 

CLK 

Variations: 
•  Usually don’t need both Step 1 and Step 3 
•  One cycle “done” signal instead of multi-cycle “busy” 
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Inside the Minor FSM 

T2 
BUSY 

T3 
 BUSY 

T4 
 BUSY 

1. Wait for a
 trigger from the

 major FSM 

2. Do some useful work 

T1 
 BUSY 

START 

START 

START 

BUSY 

Major FSM
 State S1 S2 S2 S3 S3 S3 S4 

CLK 
Minor FSM

 State T1 T1 T2 T3 T4 T1 T1 

3. Signal to the
 major FSM that

 work is done 

can we
 speed

 this up? 
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Optimizing the Minor FSM 

T2 
BUSY 

T3 
 BUSY 

T4 
 BUSY 

T1 
 BUSY 

START 

START 

Good idea: de-assert BUSY one cycle early 

Bad idea #1: 
T4 may not immediately return to T1 

T2 
BUSY 

T3 
 BUSY 

T1 
 BUSY 

START 

START 
T4 

 BUSY 

Bad idea #2: 
BUSY never asserts! 

T1 
 BUSY 

START 

START T2 
 BUSY 
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A Four-FSM Example 

Major FSM 

Minor FSM A 

Minor FSM B 

STARTA 

STARTB 

BUSYA 

BUSYB 

Minor FSM C 
STARTC 

BUSYC 

TICK 

IDLE 
STAB 

STARTA 
STARTB 

WTAB 
TICK BUSYABUSYB 

TICK BUSYA+BUSYB BUSYA+BUSYB 

STC 
 STARTC 

BUSYABUSYB 

BUSYC 

WTC BUSYC 

BUSYC 

BUSYC 

Assume that BUSYA and
 BUSYB both rise before

 either minor FSM completes.
 Otherwise, we loop forever! 

Operating Scenario: 
•  Major FSM is triggered by

 TICK 
•  Minors A and B are

 started simultaneously 
•  Minor C is started once

 both A and B complete 
•  TICKs arriving before the

 completion of C are
 ignored 
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Four-FSM Sample Waveform 

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB state 

tick 

STARTA 

BUSYA 

STARTB 

BUSYB 

STARTC 

BUSYC 

Major FSM 

Minor FSM A 

Minor FSM B 

STARTA 

STARTB 
BUSYA 

BUSYB 

Minor FSM C 
STARTC 
BUSYC 

TICK 
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Clocking and Synchronous Communication 
Module M1 Module M2 

CLK 

Ideal world: 

CLKM1 

CLKM2 

M1 and M2 clock edges aligned in time 
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Clock Skew 
Module M1 Module M2 

CLK 

Real world has clock skew: 

CLKM1 

CLKM2 

M2 clock delayed with respect to M1 clock 

delay 

Oops! Skew has caused a 
hold time problem! 

1.  Wire delay 
2.  Different clocks! 
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Low-skew Clocking in FPGAs 

Figures from Xilinx App Notes 6.111 Fall 2008 11 Lecture 6 



Goal: use as few clock domains as possible 

Suppose we wanted clocks at f/2, f/4, f/8, etc.: 

reg clk2,clk4,clk8,clk16; 
always @(posedge clk) clk2 <= ~clk2; 
always @(posedge clk2) clk4 <= ~clk4; 
always @(posedge clk4) clk8 <= ~clk16; 
always @(posedge clk8) clk16 <= ~clk16; 

CLK 

CLK2 

CLK4 

CLK8 

CLK16 

Very hard to have synchronous communication 
between clk and clk16 domains 

No! don’t do 
it this way 
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Solution: 1 clock, many enables 
Use one (high speed) clock, but create enable signals to select a subset of 
the edges to use for a particular piece of sequential logic 

reg [3:0] count; 
always @(posedge clk) count <= count + 1;   // counts 0..15 
wire enb2 = (count[0] == 1’b1); 
wire enb4 = (count[1:0] == 2’b11); 
wire enb8 = (count[2:0] == 3’b111); 
wire enb16 = (count[3:0] == 4’b1111); 

CLK 

ENB2 

ENB4 

ENB8 

ENB16 

count 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 

= clock edge selected by enable signal 

always @(posedge clk) 
  if (enb2) begin 
    // get here every 2nd cycle 
  end 
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Using External Clocks 
Sometimes you need to communicate synchronously with 
circuitry outside of the FPGA (memories, I/O, …) 

Problem: different delays along 
internal paths for DATA and CLK 
change timing relationship 

Solutions: 

1) Bound internal delay from pin 
to internal reg; add that delay 
to setup time (tSU) specification 

2) Make internal clock edge aligned 
with external clock edge (but what 
about delay of pad and clock driver) 

IO
B 

IO
B 

CLK 

DATA 

tSU th 

BUFG 

REG 
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1) Bound Internal Data Delay 

Solution: use registers built into the IOB pin interface: 

Low-delay 
inputs 

Low-delay 
tristate 
outputs 
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2) Align external and internal clocks 

Uses phase locked loop and digital delay 
lines to align CLKFB to CLKIN. 

CLK90, CLK180, CLK270 are shifted by ¼ 
cycle from CLK0. 
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Example: Labkit ZBT interface 

In the circuitry above, the lower DCM is used to ensure that the fpga_clock 
signal, which clocks all of the FPGA flip-flops, is in phase with the refence clock 
(clock_27mhz, in this example). The upper DCM is used to generate the de-
skewed clock for the external ZBT memories. The feedback loop for this DCM 
includes a 2.0 inch long trace on the labkit PCB. Since all of the PCB traces from 
the FPGA to the ZBT memories are also 2.0 inches long, the propagation delay 
from the output of the upper DCM back to its CLKFB input should be almost 
exactly the same as the propagation delay from the DCM output to the ZBT 
memories.  
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Generating Other Clock Frequencies 

The labkit has a 27MHz crystal (37ns period).  But what if we need a 
different frequency, e.g., 65MHz to generate 1024x768 VGA video? 

The DCM can also synthesize certain 
multiples of the CLKIN frequency (eg, 
multiples of 27MHz): 

CLKINCLKFX f
D
Mf 






=

Where M = 2--32 and D = 2--32 with a 
output frequency of range of 24MHz to 
210MHz. 
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Verilog to generate 65MHz clock 

   // use FPGA's digital clock manager to produce a 
   // 65MHz clock (actually 64.8MHz) 
   wire clock_65mhz_unbuf,clock_65mhz; 
   DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf)); 
   // synthesis attribute CLKFX_DIVIDE of vclk1 is 10 
   // synthesis attribute CLKFX_MULTIPLY of vclk1 is 24 
   // synthesis attribute CLK_FEEDBACK of vclk1 is NONE 
   // synthesis attribute CLKIN_PERIOD of vclk1 is 37 
   BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf)); 

( ) MHzMHzfCLKFX 8.6427
10
24

=






=
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RESETing to a known state 
Just after configuration, all the registers/memories are in a known state 
(eg, default value for regs is 0).  But you may need to include a RESET 
signal to set the initial state to what you want.  Note the Verilog initial 
block only works in simulation and has no effect when synthesizing 
hardware. 

Solution: have your logic take a RESET signal which can be asserted on 
start up and by an external push button: 

   // power-on reset generation 
   wire power_on_reset;    // remain high for first 16 clocks 
   SRL16 reset_sr (.D(1'b0), .CLK(clock_27mhz), .Q(power_on_reset), 

              .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1)); 
   defparam reset_sr.INIT = 16'hFFFF; 

   // ENTER button is user reset 
   wire reset,user_reset; 
   debounce db1(.reset(power_on_reset),.clock(clock_27mhz), 
                .noisy(~button_enter),.clean(user_reset)); 
   assign reset = user_reset | power_on_reset; 
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Debugging: making the state visible 
To figure out what your circuit is doing it can be very useful to include 
logic that makes various pieces of state visible to the outside world.  Some 
suggestions: 

•  turn the leds on and off to signal events, entry into particular pieces of 
code, etc. 

•  use the 16-character fluorescent display to show more complex state 
information 

•  drive useful data onto the ANALYZER pins and use the adapters to hook 
them up to the logic analyzer.  Include your master clock signal and the 
configure the logic analyzer to sample the data on the non-active edge of 
the clock (to avoid setup and hold problems introduced by I/O pad delays).  
The logic analyzer can capture thousands of cycles of data and display the 
results in useful ways (including interpreting multi-bit data as samples of 
an analog waveform). 
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