
System Integration Issues
•  Communicating FSMs
•  Clocking, theory and practice

6.111 Fall 2008 1 Lecture 6

Toward FSM Modularity
•  Consider the following abstract FSM:

S0

a1

b1 c1

d1

S1 S2 S3 S4 S5 S6 S7 S8 S9

a2

b2 c2

d2 a3

b3 c3

d3

•  Suppose that each set of states ax...dx is a “sub-FSM” that produces exactly
the same outputs.

•  Can we simplify the FSM by removing equivalent states?
 No! The outputs may be the same, but the
 next-state transitions are not.

•  This situation closely resembles a procedure call or function call in
software...how can we apply this concept to FSMs?

Acknowledgements: Rex Min

6.111 Fall 2008 2 Lecture 6

The Major/Minor FSM Abstraction

•  Subtasks are encapsulated in minor FSMs with common
reset and clock

•  Simple communication abstraction:
–  START: tells the minor FSM to begin operation (the call)
–  BUSY: tells the major FSM whether the minor is done (the return)

•  The major/minor abstraction is great for...
–  Modular designs (always a good thing)
–  Tasks that occur often but in different contexts
–  Tasks that require a variable/unknown period of time
–  Event-driven systems

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB
CLK

RESET RESET

CLK

6.111 Fall 2008 3 Lecture 6

Inside the Major FSM

S1
S2

START S3 S4 ...
BUSY BUSY

BUSY

BUSY

BUSY BUSY

1. Wait until
 the minor FSM

 is ready

2. Trigger the
 minor FSM

 (and make sure
 it’s started)

3. Wait until
 the minor FSM

 is done

START

BUSY

Major FSM
 State S1 S2 S2 S3 S3 S3 S4

CLK

Variations:
•  Usually don’t need both Step 1 and Step 3
•  One cycle “done” signal instead of multi-cycle “busy”

6.111 Fall 2008 4 Lecture 6

Inside the Minor FSM

T2
BUSY

T3
 BUSY

T4
 BUSY

1. Wait for a
 trigger from the

 major FSM

2. Do some useful work

T1
 BUSY

START

START

START

BUSY

Major FSM
 State S1 S2 S2 S3 S3 S3 S4

CLK
Minor FSM

 State T1 T1 T2 T3 T4 T1 T1

3. Signal to the
 major FSM that

 work is done

can we
 speed

 this up?

6.111 Fall 2008 5 Lecture 6

Optimizing the Minor FSM

T2
BUSY

T3
 BUSY

T4
 BUSY

T1
 BUSY

START

START

Good idea: de-assert BUSY one cycle early

Bad idea #1:
T4 may not immediately return to T1

T2
BUSY

T3
 BUSY

T1
 BUSY

START

START
T4

 BUSY

Bad idea #2:
BUSY never asserts!

T1
 BUSY

START

START T2
 BUSY

6.111 Fall 2008 6 Lecture 6

A Four-FSM Example

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC

BUSYC

TICK

IDLE
STAB

STARTA
STARTB

WTAB
TICK BUSYABUSYB

TICK BUSYA+BUSYB BUSYA+BUSYB

STC
 STARTC

BUSYABUSYB

BUSYC

WTC BUSYC

BUSYC

BUSYC

Assume that BUSYA and
 BUSYB both rise before

 either minor FSM completes.
 Otherwise, we loop forever!

Operating Scenario:
•  Major FSM is triggered by

 TICK
•  Minors A and B are

 started simultaneously
•  Minor C is started once

 both A and B complete
•  TICKs arriving before the

 completion of C are
 ignored

6.111 Fall 2008 7 Lecture 6

Four-FSM Sample Waveform

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB state

tick

STARTA

BUSYA

STARTB

BUSYB

STARTC

BUSYC

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB
BUSYA

BUSYB

Minor FSM C
STARTC
BUSYC

TICK

6.111 Fall 2008 8 Lecture 6

Clocking and Synchronous Communication
Module M1 Module M2

CLK

Ideal world:

CLKM1

CLKM2

M1 and M2 clock edges aligned in time
6.111 Fall 2008 9 Lecture 6

Clock Skew
Module M1 Module M2

CLK

Real world has clock skew:

CLKM1

CLKM2

M2 clock delayed with respect to M1 clock

delay

Oops! Skew has caused a
hold time problem!

1.  Wire delay
2.  Different clocks!

6.111 Fall 2008 10 Lecture 6

Low-skew Clocking in FPGAs

Figures from Xilinx App Notes 6.111 Fall 2008 11 Lecture 6

Goal: use as few clock domains as possible

Suppose we wanted clocks at f/2, f/4, f/8, etc.:

reg clk2,clk4,clk8,clk16;
always @(posedge clk) clk2 <= ~clk2;
always @(posedge clk2) clk4 <= ~clk4;
always @(posedge clk4) clk8 <= ~clk16;
always @(posedge clk8) clk16 <= ~clk16;

CLK

CLK2

CLK4

CLK8

CLK16

Very hard to have synchronous communication
between clk and clk16 domains

No! don’t do
it this way

6.111 Fall 2008 12 Lecture 6

Solution: 1 clock, many enables
Use one (high speed) clock, but create enable signals to select a subset of
the edges to use for a particular piece of sequential logic

reg [3:0] count;
always @(posedge clk) count <= count + 1; // counts 0..15
wire enb2 = (count[0] == 1’b1);
wire enb4 = (count[1:0] == 2’b11);
wire enb8 = (count[2:0] == 3’b111);
wire enb16 = (count[3:0] == 4’b1111);

CLK

ENB2

ENB4

ENB8

ENB16

count 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14

= clock edge selected by enable signal

always @(posedge clk)
 if (enb2) begin
 // get here every 2nd cycle
 end

6.111 Fall 2008 13 Lecture 6

Using External Clocks
Sometimes you need to communicate synchronously with
circuitry outside of the FPGA (memories, I/O, …)

Problem: different delays along
internal paths for DATA and CLK
change timing relationship

Solutions:

1) Bound internal delay from pin
to internal reg; add that delay
to setup time (tSU) specification

2) Make internal clock edge aligned
with external clock edge (but what
about delay of pad and clock driver)

IO
B

IO
B

CLK

DATA

tSU th

BUFG

REG

6.111 Fall 2008 14 Lecture 6

1) Bound Internal Data Delay

Solution: use registers built into the IOB pin interface:

Low-delay
inputs

Low-delay
tristate
outputs

6.111 Fall 2008 15 Lecture 6

2) Align external and internal clocks

Uses phase locked loop and digital delay
lines to align CLKFB to CLKIN.

CLK90, CLK180, CLK270 are shifted by ¼
cycle from CLK0.

6.111 Fall 2008 16 Lecture 6

Example: Labkit ZBT interface

In the circuitry above, the lower DCM is used to ensure that the fpga_clock
signal, which clocks all of the FPGA flip-flops, is in phase with the refence clock
(clock_27mhz, in this example). The upper DCM is used to generate the de-
skewed clock for the external ZBT memories. The feedback loop for this DCM
includes a 2.0 inch long trace on the labkit PCB. Since all of the PCB traces from
the FPGA to the ZBT memories are also 2.0 inches long, the propagation delay
from the output of the upper DCM back to its CLKFB input should be almost
exactly the same as the propagation delay from the DCM output to the ZBT
memories.

6.111 Fall 2008 17 Lecture 6

Generating Other Clock Frequencies

The labkit has a 27MHz crystal (37ns period). But what if we need a
different frequency, e.g., 65MHz to generate 1024x768 VGA video?

The DCM can also synthesize certain
multiples of the CLKIN frequency (eg,
multiples of 27MHz):

CLKINCLKFX f
D
Mf 






=

Where M = 2--32 and D = 2--32 with a
output frequency of range of 24MHz to
210MHz.

6.111 Fall 2008 18 Lecture 6

Verilog to generate 65MHz clock

 // use FPGA's digital clock manager to produce a
 // 65MHz clock (actually 64.8MHz)
 wire clock_65mhz_unbuf,clock_65mhz;
 DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
 // synthesis attribute CLKFX_DIVIDE of vclk1 is 10
 // synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
 // synthesis attribute CLK_FEEDBACK of vclk1 is NONE
 // synthesis attribute CLKIN_PERIOD of vclk1 is 37
 BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

() MHzMHzfCLKFX 8.6427
10
24

=






=

6.111 Fall 2008 19 Lecture 6

RESETing to a known state
Just after configuration, all the registers/memories are in a known state
(eg, default value for regs is 0). But you may need to include a RESET
signal to set the initial state to what you want. Note the Verilog initial
block only works in simulation and has no effect when synthesizing
hardware.

Solution: have your logic take a RESET signal which can be asserted on
start up and by an external push button:

 // power-on reset generation
 wire power_on_reset; // remain high for first 16 clocks
 SRL16 reset_sr (.D(1'b0), .CLK(clock_27mhz), .Q(power_on_reset),

 .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
 defparam reset_sr.INIT = 16'hFFFF;

 // ENTER button is user reset
 wire reset,user_reset;
 debounce db1(.reset(power_on_reset),.clock(clock_27mhz),
 .noisy(~button_enter),.clean(user_reset));
 assign reset = user_reset | power_on_reset;

6.111 Fall 2008 20 Lecture 6

Debugging: making the state visible
To figure out what your circuit is doing it can be very useful to include
logic that makes various pieces of state visible to the outside world. Some
suggestions:

•  turn the leds on and off to signal events, entry into particular pieces of
code, etc.

•  use the 16-character fluorescent display to show more complex state
information

•  drive useful data onto the ANALYZER pins and use the adapters to hook
them up to the logic analyzer. Include your master clock signal and the
configure the logic analyzer to sample the data on the non-active edge of
the clock (to avoid setup and hold problems introduced by I/O pad delays).
The logic analyzer can capture thousands of cycles of data and display the
results in useful ways (including interpreting multi-bit data as samples of
an analog waveform).

6.111 Fall 2008 21 Lecture 6

