
Finite State Machines 
•  Design methodology for sequential logic 

  -- identify distinct states 
  -- create state transition diagram 
  -- choose state encoding 
  -- write combinational Verilog for next-state logic 
  -- write combinational Verilog for output signals 

•  Lots of examples 

6.111 Fall 2008 1 Lecture 5 

Reminder: Lab #2 due tonight! 



Finite State Machines 

•  Finite State Machines (FSMs) are a useful abstraction for
 sequential circuits with centralized “states” of operation 

•  At each clock edge, combinational logic computes outputs and
 next state as a function of inputs and present state 
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Two Types of FSMs 
Moore and Mealy FSMs : different output generation 

outputs 
yk = fk(S) 

inputs 
x0...xn 

• Moore FSM: 
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• Mealy FSM: 
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direct combinational path! 
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Design Example: Level-to-Pulse 
•  A level-to-pulse converter produces a single

-cycle pulse each time its input goes high. 
•  It’s a synchronous rising-edge detector. 
•  Sample uses: 

–  Buttons and switches pressed by humans for
 arbitrary periods of time 

–  Single-cycle enable signals for counters 
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Whenever input L goes
 from low to high... 

...output P produces a
 single pulse, one clock

 period wide. 
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High input, 
Waiting for fall 

11 
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L=0 
00 

Low input,  
Waiting for rise 

P = 0 

01 
Edge Detected! 

P = 1 

L=1 
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•  State transition diagram is a useful FSM representation and 
  design aid: 

Step 1: State Transition Diagram 
•  Block diagram of desired system: 
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Valid State Transition Diagrams 

High input, 
Waiting for fall 

11 

P = 0 

L=1 

L=0 
00 

Low input,  
Waiting for rise 

P = 0 

01 
Edge Detected! 

P = 1 

L=1 

L=0 L=0 

L=1 

• Arcs leaving a state are mutually exclusive, i.e., for any 
combination input values there’s at most one applicable arc 

• Arcs leaving a state are collectively exhaustive, i.e., for any 
combination of input values there’s at least one applicable arc 

• So for each state: for any combination of input values there’s 
exactly one applicable arc 

• Often a starting state is specified 
• Each state specifies values for all outputs (Moore) 
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Choosing State Representation 
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Choice #1: binary encoding 

For N states, use ceil(log2N) bits to encode the state with each 
state represented by a unique combination of the bits.  
Tradeoffs: most efficient use of state registers, but requires 
more complicated combinational logic to detect when in a 
particular state. 

Choice #2: “one-hot” encoding 

For N states, use N bits to encode the state where the bit 
corresponding to the current state is 1, all the others 0.  
Tradeoffs: more state registers, but often much less 
combinational logic since state decoding is trivial. 



Step 2: Logic Derivation 

00 
Low input,  
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P = 0 
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•  Combinational logic may be derived using Karnaugh maps 
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Transition diagram is readily converted to a 
state transition table (just a truth table) 
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Moore Level-to-Pulse Converter 

Moore FSM circuit implementation of level-to-pulse converter: 

outputs 
yk = fk(S) 

inputs 
x0...xn 
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1. When L=1 and S=0, this output is
 asserted immediately and until the

 state transition occurs (or L
 changes). 

2. While in state S=1 and as long as L
 remains at 1, this output is asserted. 

L=1 | P=0 

L=1 | P=1 

P=0 

0 
Input is low 

1 
Input is high 

L=0 | P=0 

L=0 | P=0 

Design of a Mealy Level-to-Pulse 

•  Since outputs are determined by state and inputs, Mealy FSMs may
 need fewer states than Moore FSM implementations 
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Mealy Level-to-Pulse Converter 

Mealy FSM circuit implementation of level-to-pulse converter: 

Pres. 
State In Next  

State Out 

S L S+ P 
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•  FSM’s state simply remembers the previous value of L 
•  Circuit benefits from the Mealy FSM’s implicit single-cycle 

assertion of outputs during state transitions 
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Moore/Mealy Trade-Offs 

•  How are they different? 
–  Moore: outputs = f( state ) only 
–  Mealy outputs = f( state and input ) 
–  Mealy outputs generally occur one cycle earlier than a Moore: 

•  Compared to a Moore FSM, a Mealy FSM might... 
–  Be more difficult to conceptualize and design 
–  Have fewer states 
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Moore: delayed assertion of P 
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Example: Intersection Traffic Lights 

•  Design a controller for the traffic lights at the intersection of
 two streets – two sets of traffic lights, one for each of the
 streets. 

•  Step 1: Draw starting state transition diagram.  Just handle the
 usual green-yellow-red cycle for both streets.  How many
 states? Well, how many different combinations of the two sets
 of lights are needed? 

•  Step 2: add support for a walk button and walk lights to your
 state transition diagram. 

•  Step 3: add support for a traffic sensor for each of the streets
 – when the sensor detects traffic the green cycle for that
 street is extended. 

Example to be worked collaboratively on the board… 
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FSM Example 
GOAL: 

Build an electronic combination lock with a reset 
button, two number buttons (0 and 1), and an unlock 
output.  The combination should be 01011. 

“0” 
“1” 

RESET 
UNLOCK 

STEPS: 
1.  Design lock FSM (block diagram, state transitions) 
2. Write Verilog module(s) for FSM 
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Step 1A: Block Diagram 
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Step 1B: State transition diagram 
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6 states → 3 bits 
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Step 2: Write Verilog 
module lock(input clk,reset_in,b0_in,b1_in, 
            output out); 

  // synchronize push buttons, convert to pulses 

  // implement state transition diagram 
  reg [2:0] state,next_state; 
  always @(*) begin 
    // combinational logic! 
    next_state = ???; 
  end 
  always @(posedge clk) state <= next_state; 

  // generate output 
  assign out = ???; 

  // debugging? 
endmodule 

6.111 Fall 2008 17 Lecture 5 



Step 2A: Synchronize buttons 
// button 
// push button synchronizer and level-to-pulse converter 
// OUT goes high for one cycle of CLK whenever IN makes a 
// low-to-high transition. 

module button( 
  input clk,in, 
  output out 
); 
  reg r1,r2,r3; 
  always @(posedge clk) 
  begin 
    r1 <= in;   // first reg in synchronizer 
    r2 <= r1;   // second reg in synchronizer, output is in sync! 
    r3 <= r2;   // remembers previous state of button 
  end 

  // rising edge = old value is 0, new value is 1 
  assign out = ~r3 & r2;   
endmodule 

D Q D Q D Q in 
r3 r1 r2 

clk 

out 

synchronizer state 
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Step 2B: state transition diagram 
  parameter S_RESET = 0; // state assignments 
  parameter S_0 = 1; 
  parameter S_01 = 2; 
  parameter S_010 = 3; 
  parameter S_0101 = 4; 
  parameter S_01011 = 5; 

  reg [2:0] state, next_state;  
  always @(*) begin 
    // implement state transition diagram 
    if (reset) next_state = S_RESET; 
    else case (state) 
      S_RESET: next_state = b0 ? S_0   : (b1 ? S_RESET : state); 
      S_0:     next_state = b0 ? S_0   : (b1 ? S_01    : state); 
      S_01:    next_state = b0 ? S_010 : (b1 ? S_RESET : state); 
      S_010:   next_state = b0 ? S_0   : (b1 ? S_0101  : state); 
      S_0101:  next_state = b0 ? S_010 : (b1 ? S_01011 : state); 
      S_01011: next_state = b0 ? S_0   : (b1 ? S_RESET : state); 
      default: next_state = S_RESET;  // handle unused states 
    endcase 
  end 

  always @(posedge clk) state <= next_state; 

RESET
Unlock = 0

“0”
Unlock = 0

“01”
Unlock = 0

“01011 ”
Unlock = 1

“0101”
Unlock = 0

“010”
Unlock = 0

0 1

0

11

1 0
1

0

0

1
0

RESET
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Step 2C: generate output 

// it’s a Moore machine!  Output only depends on current state 

assign out = (state == S_01011); 

Step 2D: debugging? 

// hmmm.  What would be useful to know?  Current state? 

assign hex_display = {1'b0,state[2:0]}; 
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Step 2: final Verilog implementation 
module lock(input clk,reset_in,b0_in,b1_in, 
            output out, output [3:0] hex_display); 

  wire reset, b0, b1; // synchronize push buttons, convert to pulses 
  button b_reset(clk,reset_in,reset); 
  button b_0(clk,b0_in,b0); 
  button b_1(clk,b1_in,b1); 

  parameter S_RESET = 0; parameter S_0 = 1; // state assignments 
  parameter S_01 = 2;  parameter S_010 = 3; 
  parameter S_0101 = 4;  parameter S_01011 = 5; 

  reg [2:0] state,next_state;  
  always @(*) begin                      // implement state transition diagram 
    if (reset) next_state = S_RESET; 
    else case (state) 
      S_RESET: next_state = b0 ? S_0   : (b1 ? S_RESET : state); 
      S_0:     next_state = b0 ? S_0   : (b1 ? S_01    : state); 
      S_01:    next_state = b0 ? S_010 : (b1 ? S_RESET : state); 
      S_010:   next_state = b0 ? S_0   : (b1 ? S_0101  : state); 
      S_0101:  next_state = b0 ? S_010 : (b1 ? S_01011 : state); 
      S_01011: next_state = b0 ? S_0   : (b1 ? S_RESET : state); 
      default: next_state = S_RESET;     // handle unused states 
    endcase 
  end 
  always @(posedge clk) state <= next_state; 

  assign out = (state == S_01011);    // assign output: Moore machine 
  assign hex_display = {1'b0,state};      // debugging  
endmodule 
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Where should CLK come from? 

•  Option 1: external crystal 
–  Stable, known frequency, typically 50% duty cycle 

•  Option 2: internal signals 
–  Option 2A: output of combinational logic 

•  No! If inputs to logic change, output may make several
 transitions before settling to final value → several rising edges,
 not just one!  Hard to design away output glitches… 

–  Option 2B: output of a register 
•  Okay, but timing of CLK2 won’t line up with CLK1 

D Q 

CLK1 

CLK2 

CLK1 
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