Finite State Machines

* Design methodology for sequential logic
-- identify distinct states
-- create state transition diagram
-- choose state encoding
-- write combinational Verilog for next-state logic
-- write combinational Verilog for output signals

* Lots of examples
Reminder: Lab #2 due tonight!

Finite State Machines

* Finite State Machines (FSMs) are a useful abstraction for
sequential circuits with centralized "states"” of operation

« At each clock edge, combinational logic computes oufputs and
next state as a function of /nputs and present state

outputs

next
)state

mputs —)

present
state

CLK

6.111 Fall 2008 Lecture 5

Two Types of FSMs

Moore and Mealy FSMs : different output generation
* Moore FSM:

next

state
. S
Inputs outputs
XO"'XH n yk = fk(s)
CLK
n
present state S
outputs
i = Fu(S, xp...%,)

* Mealy FSM:

direct combinational path!

inputs :
Xo-- Xy n
ii CLK i
n
S

6.111 Fall 2008 Lecture 5

Design Example: Level-to-Pulse

* A level-to-pulse converter produces a single
-cycle pulse each time its input goes high.

« It's a synchronous rising-edge detector.

- Sample uses:

— Buttons and switches pressed by humans for

arbitrary periods of time

— Single-cycle enable signals for counters

Whenever input L goes
from low to high...

6.111 Fall 2008

—

L

>

Level to
Pulse
Converter

P

-

CLK

Lecture b

...output P produces a
single pulse, one clock
period wide.

Step 1: State Transition Diagram

* Block diagram of desired system:

Synchronizer Edge Detector
: Level to
unsynchronized | |
user input D Q D Q L Pulse P
- > FSM
CLK

+ State transition diagram is a useful FSM representation and
design aid:

“if L=1 at the clock edge, — L=1 -1
then jump to state 01." L=

Binary values of states

11

High input,
St Leiesizt Waiting for fall

P=1 P=0

L=1

“if L=0 at the clock \ / '|:his is the output that results

- his state. (Moore or
edge, then stay in from
state 00." Mealy?)

Valid State Transition Diagrams

00
Low input,
Waiting for rise
P=0

11
High input,
Waiting for fall
P=0

01
Edge Detected!
P=1

L=0

* Arcs leaving a state are mutually exclusive, i.e., for any
combination input values there's at most one applicable arc

* Arcs leaving a state are collectively exhaustive, i.e., for any
combination of input values there's at least one applicable arc

* So for each state: for any combination of input values there's
exactly one applicable arc

« Often a starting state is specified
* Each state specifies values for all outputs (Moore)

Choosing State Representation

Choice #1: binary encoding

For N states, use ceil(log,N) bits to encode the state with each
state represented by a unique combination of the bits.
Tradeoffs: most efficient use of state registers, but requires
more complicated combinational logic o detect when in a
particular state.

Choice #2: "one-hot" encoding

For N states, use N bits to encode the state where the bit
corresponding to the current state is 1, all the others O.
Tradeoffs: more state registers, but often much less
combinational logic since state decoding is trivial.

Step 2: Logic Derivation

Transition diagram is readily converted to a C;::::" In gi’f; Out
state transition table (just a truth table) s, 5,|L|s” s P
= 0O o|0|lO0O OO
) T O o(j110 1|0
Low input, High input, 0 1 0 0 0 1
it | Edge Detected! iting fo
aiti g:fr' risg P=1 a ‘rPngifOr‘ fal 0 1 1 1 1 1
1 1,010 O O
1 1111 1] 0

-+ Combinational logic may be derived using Karnaugh maps

5.5 for S,

L

L

o)
1

00 01 11 10

0

0

0

X

0

1

1

X

5,5, fOf' 50+-'

00 01 11 10

0]0

—

0

0

X

1

1

1

X

L P
—) ;
iomp. _'n_ngegis‘rer% R s for P:
ogic Logic 1
CLK =>]:n o\, 0 1
010:X

5+

51+ = LSO
Sy =L

5 —
P=5,5 111:0

Moore Level-to-Pulse Converter

next

A state £ Ay
5+

mpu’rs_ Comb. _’n_>DRe iste sQ Comb., ==y OUTPUTS
X0-+-Xn Logic gister Logic Yk = Tu(S)
CLK =2
n

present state S
51+ = LSO P c_
So'=L

Moore FSM circuit implementation of level-to-pulse converter:

L So > Q So
P
kTP Q '—;)___
) D
Q
|__/ S, _| s
_> Q

Design of a Mealy Level-to-Pulse

direct combinational path! >.,
Ay . Ay
S Comb.

—— D Q D"
i«;mit::. n Registers Logic
9 cLK=>)

S

« Since outputs are determined by state and inputs, Mealy FSMs may
need fewer states than Moore FSM implementations
state transition occurs (or L

c\hanges). | XR i :j/(L_\}@D_

(L)t 2 ot J—\JQ_
Stat :

e
Output transitions immediately.

State transitions at the clock
P=0 edge.

2. While in state S=1and as long as L /
remains at I, this output is asserted.

1. When L=1 and 5=0, this output is
asserted immediately and until the

L=0 | P=0

6.111 Fall 2008 Lecture b

10

Mealy Level-to-Pulse Converter

res. | ao | M| o
S L St P
0 o 0o o
0 1 1 1
1 o o 0o
1 1 1 0

Mealy FSM circuit implementation of level-to-pulse converter:

P

0

D
CLK —D>

Ol

s
FSM's state simply remembers the previous value of L

Circuit benefits from the Mealy FSM's implicit single-cycle
assertion of outputs during state transitions

Moore/Mealy Trade-Offs

« How are they different?
— Moore: outputs = f(state) only
— Mealy outputs = f(state and input)
— Mealy outputs generally occur one cycle earlier than a Moore:

Moore: delayed assertion of P Mealy: immediate assertion of P
P
Clock [\
State|
0]

Compared to a Moore FSM, a Mealy FSM might...
- Be more difficult to conceptualize and design
- Have fewer states

Example: Intersection Traffic Lights

Design a controller for the traffic lights at the intersection of
two streets - two sets of traffic lights, one for each of the
streets.

Step 1. Draw starting state transition diagram. Just handle the
usual green-yellow-red cycle for both streets. How many
states? Well, how many different combinations of the two sets
of lights are needed?

Step 2: add support for a walk button and walk lights to your
state transition diagram.

Step 3: add support for a traffic sensor for each of the streets
- when the sensor detects traffic the green cycle for that
street is extended.

Example to be worked collaboratively on the board...

FSM Example

GOAL.:
Build an electronic combination lock with a reset

button, two number buttons (O and 1), and an unlock
output. The combination should be 01011,

RESET
"0’ UNLOCK
«1
STEPS:

1. Design lock FSM (block diagram, state transitions)
2. Write Verilog module(s) for FSM

14

Step 1A: Block Diagram

lock
gegleor'(c::tlfror' > fsm_clock
Unlock
Button reset LED
Enter
Button bO_in
@ LED
DISPLAY
Button bl_in bl:lc
1 ™

6.111 Fall 2008 Lecture 5

Step 1B: State transition diagram

RESET

e

RESET " "01"
Unlock = 0 Unlock = 0 Unlock = 0

"01011" "0101" "010"
Unlock = 1 Unlock = 0 Unlock = 0

0

6 states — 3 bits

Step 2: Write Verilog

module Tock(input clk,reset_in,b0_in,bl_1in,
output out);

// synchronize push buttons, convert to pulses

// 1implement state transition diagram
reg [2:0] state,next_state;
always @(*) begin
// combinational logic!
next_state = ?77;
end
always @(posedge clk) state <= next_state;

// generate output
assign out = ?77;

// debugging?
endmodule

Step 2A: Synchronize buttons

// button

// push button synchronizer and level-to-pulse converter
// OUT goes high for one cycle of CLK whenever IN makes a

// low-to-high transition.

module button(
input clk,in,
output out
E
reg rl,r2,r3;
always @(posedge
begin
rl <= 1in; //
r2 <= rl; //
r3 <= r2; //
end

// rising edge =
assign out = ~r3
endmodule

clk)

first reg in synchronizer

-~

r1

\

Y
synchronizer

IN—D Q<D ——
> >
clk |_
N

out
r3

state

!

second reg 1n synchronizer, output i1s 1n sync!
remembers previous state of button

old value 1is 0,

& r2;

hew value is 1

18

Step 2B: state transition diagram

parameter S_RESET = 0; // state assignments

parameter S_0 = 1; “5”\\

parameter S_01 = 2; 1 0
parameter S_010 = 3; (:uﬁﬁfo o P Uniok =0 |
parameter S_0101 = 4; \\/ ;J//H i
parameter S_01011 = 5; ///ﬂ) \\\e/

reg [2:0] state, next_state; | Unlock = 1 /™ Unlock = 0 /<™ Unlock = 0
always @(*) begin N \\\J€<\,/ —
// implement state transition diagram
1if (reset) next_state = S_RESET;
else case (state)

S_RESET: next_state = b0 ? S_0 (bl ? S_RESET : state);
S_O: nhext_state = b0 ? S_0O : (b1 ? S_01 : state);
S_01: hext_state = b0 ? S_010 : (bl ? S_RESET : state);
S_010: nhext_state = b0 ? S_0O : (bl ? S_0101 : state);
S_0101: next_state = b0 ? S_010 : (bl ? S_01011 : state);
S_01011: next_state = b0 ? S_O : (b1l ? S_RESET : state);
default: next_state = S_RESET; // handle unused states
endcase
end

always @(posedge clk) state <= next_state;

Step 2C: generate output

// 1t’s a Moore machine! Output only depends on current state

assign out = (state == S_01011);

Step 2D: debugging?

// hmmm. What would be useful to know? Current state?

assign hex_display = {1'b0,state[2:0]};

Step 2: final Verilog implementation

//;;dule lock (input clk,reset in,b0 in,bl in,
output out, output [3:0]

wire reset, b0, bl;

button b reset (clk,reset in,reset);

button b 0(clk,b0 in,bO0);

button b 1(clk,bl in,bl);

// synchronize push buttons,

hex display);

convert to pulses

~

parameter S 01

= 2
parameter S 0101 =

parameter S RESET = 0; parameter S 0 = 1;

4;

// state assignments
parameter S 010 = 3;
parameter S 01011 = 5;

reg [2:0]
always @(*)
if (reset)
else case
S RESET:
S 0:
S 01:
S 010:
S 0101:
S 01011:
default:
endcase
end

endmodule

assign out =
assign hex display = {1

state,next state;

begin

next state
(state)
next state
next state
next state
next state
next state
next state
next state

always @(posedge clk) s

(state ==

// implement state transition diagram

= S _RESET;
=Db0 ? S O (bl ? S RESET state) ;
= b0 2 S 0 (b1 ? S 01 state) ;
= b0 ? S 010 : (bl ? S RESET : state);
= b0 ? S O (bl 2 S 0101 state);
=Db0 2 S 010 : (bl 2 S 01011 : state);
= b0 ? S 0 (bl ? S RESET : state)

= S _RESET; // handle unused states

tate <= next state;

S 01011);
'b0, state};

// assign output: Moore machine
// debugging

/

Where should CLK come from?

« Option 1: external crystal

— Stable, known frequency, typically 50% duty cycle
 Option 2: internal signals

— Option 2A: output of combinational logic

I >
— ——

* No! If inputs to logic change, output may make several
transitions before settling to final value — several rising edges,
not just onel Hard to design away output glitches...

— Option 2B: output of a register

* Okay, but timing of CLK2 won't line up with CLK1

<>
| . o
— ‘D Ql— CLK2

6.111 Fall 2008 Lecture 5 22

