
Finite State Machines
•  Design methodology for sequential logic

 -- identify distinct states
 -- create state transition diagram
 -- choose state encoding
 -- write combinational Verilog for next-state logic
 -- write combinational Verilog for output signals

•  Lots of examples

6.111 Fall 2008 1 Lecture 5

Reminder: Lab #2 due tonight!

Finite State Machines

•  Finite State Machines (FSMs) are a useful abstraction for
 sequential circuits with centralized “states” of operation

•  At each clock edge, combinational logic computes outputs and
 next state as a function of inputs and present state

Combinational
Logic

Registers
Q D

CLK

inputs
+

present
state

outputs
+

next
state

n n

6.111 Fall 2008 2 Lecture 5

Two Types of FSMs
Moore and Mealy FSMs : different output generation

outputs
yk = fk(S)

inputs
x0...xn

• Moore FSM:

Comb.
Logic

CLK
n

Registers Comb.
Logic

D Q

present state S

n

next
state

S+

inputs
x0...xn

• Mealy FSM:

S

Comb.
Logic

CLK

Registers
Comb.
Logic D Q

n

S+

n

outputs
yk = fk(S, x0...xn)

direct combinational path!

6.111 Fall 2008 3 Lecture 5

Design Example: Level-to-Pulse
•  A level-to-pulse converter produces a single

-cycle pulse each time its input goes high.
•  It’s a synchronous rising-edge detector.
•  Sample uses:

–  Buttons and switches pressed by humans for
 arbitrary periods of time

–  Single-cycle enable signals for counters

Level to
Pulse

Converter
L P

CLK

Whenever input L goes
 from low to high...

...output P produces a
 single pulse, one clock

 period wide.

6.111 Fall 2008 4 Lecture 5

High input,
Waiting for fall

11

P = 0

L=1

L=0
00

Low input,
Waiting for rise

P = 0

01
Edge Detected!

P = 1

L=1

L=0 L=0

L=1

•  State transition diagram is a useful FSM representation and
 design aid:

Step 1: State Transition Diagram
•  Block diagram of desired system:

D Q
Level to
Pulse
FSM

L P
unsynchronized

user input

Synchronizer Edge Detector

This is the output that results
 from this state. (Moore or

 Mealy?)

P = 0

11

Binary values of states

L=0

“if L=0 at the clock
 edge, then stay in

 state 00.”

L=1 “if L=1 at the clock edge,
 then jump to state 01.”

D Q

CLK

6.111 Fall 2008 5 Lecture 5

Valid State Transition Diagrams

High input,
Waiting for fall

11

P = 0

L=1

L=0
00

Low input,
Waiting for rise

P = 0

01
Edge Detected!

P = 1

L=1

L=0 L=0

L=1

• Arcs leaving a state are mutually exclusive, i.e., for any
combination input values there’s at most one applicable arc

• Arcs leaving a state are collectively exhaustive, i.e., for any
combination of input values there’s at least one applicable arc

• So for each state: for any combination of input values there’s
exactly one applicable arc

• Often a starting state is specified
• Each state specifies values for all outputs (Moore)

6.111 Fall 2008 6 Lecture 5

Choosing State Representation

6.111 Fall 2008 Lecture 5 7

Choice #1: binary encoding

For N states, use ceil(log2N) bits to encode the state with each
state represented by a unique combination of the bits.
Tradeoffs: most efficient use of state registers, but requires
more complicated combinational logic to detect when in a
particular state.

Choice #2: “one-hot” encoding

For N states, use N bits to encode the state where the bit
corresponding to the current state is 1, all the others 0.
Tradeoffs: more state registers, but often much less
combinational logic since state decoding is trivial.

Step 2: Logic Derivation

00
Low input,

Waiting for rise
P = 0

01
Edge Detected!

P = 1

11
High input,

Waiting for fall
P = 0

L=1 L=1

L=0 L=0

L=1 L=0

Current
State In Next

State Out

S1 S0 L S1
+ S0

+ P
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 1
1 1 0 0 0 0
1 1 1 1 1 0

•  Combinational logic may be derived using Karnaugh maps

00 01 11 10
0 0 0 0 X
1 0 1 1 X

00 01 11 10
0 0 0 0 X
1 1 1 1 X

S1S0
L

S1S0
L

for S1
+:

for S0
+: 0 1

0 0 X
1 1 0

S1
for P:

S0

Comb.
Logic

CLK
n

Registers Comb.
Logic

D Q

S

n

S+ L P

S1
+ = LS0

S0
+ = L

P = S1S0

Transition diagram is readily converted to a
state transition table (just a truth table)

6.111 Fall 2008 8 Lecture 5

Moore Level-to-Pulse Converter

Moore FSM circuit implementation of level-to-pulse converter:

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

CLK
n

Registers Comb.
Logic

D Q

present state S

n

next
state

S+

D Q

S1
+ = LS0

S0
+ = L

P = S1S0

D Q

S0

S1

CLK

S0
+

S1
+

L P
Q

Q

6.111 Fall 2008 9 Lecture 5

1. When L=1 and S=0, this output is
 asserted immediately and until the

 state transition occurs (or L
 changes).

2. While in state S=1 and as long as L
 remains at 1, this output is asserted.

L=1 | P=0

L=1 | P=1

P=0

0
Input is low

1
Input is high

L=0 | P=0

L=0 | P=0

Design of a Mealy Level-to-Pulse

•  Since outputs are determined by state and inputs, Mealy FSMs may
 need fewer states than Moore FSM implementations

S

Comb.
Logic

CLK
Registers

Comb.
Logic D Q

n

S+

n

direct combinational path!

P
L

Stat
e

Clock

Output transitions immediately.
State transitions at the clock

 edge.

1
2

6.111 Fall 2008 10 Lecture 5

Mealy Level-to-Pulse Converter

Mealy FSM circuit implementation of level-to-pulse converter:

Pres.
State In Next

State Out

S L S+ P
0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 0

D Q
S

CLK

S+
L

P

Q
S

•  FSM’s state simply remembers the previous value of L
•  Circuit benefits from the Mealy FSM’s implicit single-cycle

assertion of outputs during state transitions

0
Input is low

1
Input is high

L=1 | P=1

L=0 | P=0
L=1 | P=0 L=0 | P=0

6.111 Fall 2008 11 Lecture 5

Moore/Mealy Trade-Offs

•  How are they different?
–  Moore: outputs = f(state) only
–  Mealy outputs = f(state and input)
–  Mealy outputs generally occur one cycle earlier than a Moore:

•  Compared to a Moore FSM, a Mealy FSM might...
–  Be more difficult to conceptualize and design
–  Have fewer states

P

L

State

Clock

Mealy: immediate assertion of P

P

L

State[
0]

Clock

Moore: delayed assertion of P

6.111 Fall 2008 12 Lecture 5

Example: Intersection Traffic Lights

•  Design a controller for the traffic lights at the intersection of
 two streets – two sets of traffic lights, one for each of the
 streets.

•  Step 1: Draw starting state transition diagram. Just handle the
 usual green-yellow-red cycle for both streets. How many
 states? Well, how many different combinations of the two sets
 of lights are needed?

•  Step 2: add support for a walk button and walk lights to your
 state transition diagram.

•  Step 3: add support for a traffic sensor for each of the streets
 – when the sensor detects traffic the green cycle for that
 street is extended.

Example to be worked collaboratively on the board…

6.111 Fall 2008 13 Lecture 5

FSM Example
GOAL:

Build an electronic combination lock with a reset
button, two number buttons (0 and 1), and an unlock
output. The combination should be 01011.

“0”
“1”

RESET
UNLOCK

STEPS:
1.  Design lock FSM (block diagram, state transitions)
2. Write Verilog module(s) for FSM

6.111 Fall 2008 14 Lecture 5

Step 1A: Block Diagram

fsm_clock

reset

b0_in

b1_in

lock

button

button

button

Clock
generator

Button
Enter

Button
0

Button
1

fsm

state

unlock

reset

b0

b1

LED
DISPLAY

Unlock
LED

6.111 Fall 2008 15 Lecture 5

Step 1B: State transition diagram

RESET
Unlock = 0

“0”
Unlock = 0

“01”
Unlock = 0

“01011”
Unlock = 1

“0101”
Unlock = 0

“010”
Unlock = 0

0 1

0

1 1

1 0
1

0

0

1
0

RESET

6 states → 3 bits
6.111 Fall 2008 16 Lecture 5

Step 2: Write Verilog
module lock(input clk,reset_in,b0_in,b1_in,
 output out);

 // synchronize push buttons, convert to pulses

 // implement state transition diagram
 reg [2:0] state,next_state;
 always @(*) begin
 // combinational logic!
 next_state = ???;
 end
 always @(posedge clk) state <= next_state;

 // generate output
 assign out = ???;

 // debugging?
endmodule

6.111 Fall 2008 17 Lecture 5

Step 2A: Synchronize buttons
// button
// push button synchronizer and level-to-pulse converter
// OUT goes high for one cycle of CLK whenever IN makes a
// low-to-high transition.

module button(
 input clk,in,
 output out
);
 reg r1,r2,r3;
 always @(posedge clk)
 begin
 r1 <= in; // first reg in synchronizer
 r2 <= r1; // second reg in synchronizer, output is in sync!
 r3 <= r2; // remembers previous state of button
 end

 // rising edge = old value is 0, new value is 1
 assign out = ~r3 & r2;
endmodule

D Q D Q D Q in
r3 r1 r2

clk

out

synchronizer state

6.111 Fall 2008 18 Lecture 5

Step 2B: state transition diagram
 parameter S_RESET = 0; // state assignments
 parameter S_0 = 1;
 parameter S_01 = 2;
 parameter S_010 = 3;
 parameter S_0101 = 4;
 parameter S_01011 = 5;

 reg [2:0] state, next_state;
 always @(*) begin
 // implement state transition diagram
 if (reset) next_state = S_RESET;
 else case (state)
 S_RESET: next_state = b0 ? S_0 : (b1 ? S_RESET : state);
 S_0: next_state = b0 ? S_0 : (b1 ? S_01 : state);
 S_01: next_state = b0 ? S_010 : (b1 ? S_RESET : state);
 S_010: next_state = b0 ? S_0 : (b1 ? S_0101 : state);
 S_0101: next_state = b0 ? S_010 : (b1 ? S_01011 : state);
 S_01011: next_state = b0 ? S_0 : (b1 ? S_RESET : state);
 default: next_state = S_RESET; // handle unused states
 endcase
 end

 always @(posedge clk) state <= next_state;

RESET
Unlock = 0

“0”
Unlock = 0

“01”
Unlock = 0

“01011 ”
Unlock = 1

“0101”
Unlock = 0

“010”
Unlock = 0

0 1

0

11

1 0
1

0

0

1
0

RESET

6.111 Fall 2008 19 Lecture 5

Step 2C: generate output

// it’s a Moore machine! Output only depends on current state

assign out = (state == S_01011);

Step 2D: debugging?

// hmmm. What would be useful to know? Current state?

assign hex_display = {1'b0,state[2:0]};

6.111 Fall 2008 20 Lecture 5

Step 2: final Verilog implementation
module lock(input clk,reset_in,b0_in,b1_in,
 output out, output [3:0] hex_display);

 wire reset, b0, b1; // synchronize push buttons, convert to pulses
 button b_reset(clk,reset_in,reset);
 button b_0(clk,b0_in,b0);
 button b_1(clk,b1_in,b1);

 parameter S_RESET = 0; parameter S_0 = 1; // state assignments
 parameter S_01 = 2; parameter S_010 = 3;
 parameter S_0101 = 4; parameter S_01011 = 5;

 reg [2:0] state,next_state;
 always @(*) begin // implement state transition diagram
 if (reset) next_state = S_RESET;
 else case (state)
 S_RESET: next_state = b0 ? S_0 : (b1 ? S_RESET : state);
 S_0: next_state = b0 ? S_0 : (b1 ? S_01 : state);
 S_01: next_state = b0 ? S_010 : (b1 ? S_RESET : state);
 S_010: next_state = b0 ? S_0 : (b1 ? S_0101 : state);
 S_0101: next_state = b0 ? S_010 : (b1 ? S_01011 : state);
 S_01011: next_state = b0 ? S_0 : (b1 ? S_RESET : state);
 default: next_state = S_RESET; // handle unused states
 endcase
 end
 always @(posedge clk) state <= next_state;

 assign out = (state == S_01011); // assign output: Moore machine
 assign hex_display = {1'b0,state}; // debugging
endmodule

6.111 Fall 2008 21 Lecture 5

Where should CLK come from?

•  Option 1: external crystal
–  Stable, known frequency, typically 50% duty cycle

•  Option 2: internal signals
–  Option 2A: output of combinational logic

•  No! If inputs to logic change, output may make several
 transitions before settling to final value → several rising edges,
 not just one! Hard to design away output glitches…

–  Option 2B: output of a register
•  Okay, but timing of CLK2 won’t line up with CLK1

D Q

CLK1

CLK2

CLK1
6.111 Fall 2008 22 Lecture 5

