
Sequential Logic 
•  Digital state: the D-Register 
•  Timing constraints for D-Registers 
•  Specifying registers in Verilog 
•  Blocking and nonblocking assignments 
•  Verilog execution semantics: concurrency & nondeterminism 
•  Examples 

6.111 Fall 2008 1 Lecture 4 

Reminder: Lab #2 due Thursday! 



Something We Can’t Build (Yet) 

What if you were given the following design specification: 

When the button is pushed: 
1) Turn on the light if 

it is off 
2) Turn off the light if 

it is on 

The light should change 
state within a second 
of the button press 

button light 

What makes this circuit so different 
from those we’ve discussed before? 

 1. “State” – i.e. the circuit has memory 
2. The output was changed by a input 
     “event” (pushing a button) rather 
     than an input “value” 

6.111 Fall 2008 2 Lecture 4 



Digital State 
One model of what we’d like to build 

Plan: Build a Sequential Circuit with stored digital STATE – 

•  Memory stores CURRENT state, produced at output 
•  Combinational Logic computes 

•  NEXT state (from input, current state) 

•  OUTPUT bit (from input, current state) 

•  State changes on LOAD control input 

Combinational 
Logic 

Current 
State 

New 
State 

Input Output 

Memory 
Device 

LOAD 

When Output depends on input 
and current state, circuit is 
called a Mealy machine. If 
Output depends only on the 
current state, circuit is called 
a Moore machine. 

6.111 Fall 2008 3 Lecture 4 



Our next building block: the D register 

D 
CLK 

Q 

The edge-triggered D register: on 
the rising edge of CLK, the value of 
D is saved in the register and then 
shortly afterwards appears on Q. 

6.111 Fall 2008 4 Lecture 4 



D-Register Timing - I 

CLK 

D 

Q 

≤tPD 

tPD: maximum propagation delay, CLK →Q 

tCD: minimum contamination delay, CLK →Q 

≥tCD 

≥tSETUP 

tSETUP: setup time 
How long D must be stable before the rising edge of CLK 

≥tHOLD 

tHOLD: hold time 
How long D must be stable after the rising edge of CLK 

6.111 Fall 2008 5 Lecture 4 



D-Register Timing - II 

CLK 
tPD,reg1 

logic D Q D Q 

CLK 

reg1 reg2 

tPD,logic 

tPD,reg1 + tPD,logic + tSETUP,reg2 ≤ tCLK 

tCLK 

≥ tSETUP,reg2 The good news: you can 
choose tCLK so that this 
constraint is satisfied! 

tCD,reg1 

tCD,logic 

tCD,reg1 + tCD,logic ≥ tHOLD,reg2  
The bad news: you have to change 
your design if this constraint isn’t 
met. 

6.111 Fall 2008 6 Lecture 4 



Single-clock Synchronous Circuits 

Single-clock Synchronous Discipline 
• No combinational cycles 

• Only care about value of
 combinational circuits just before
 rising edge of clock 

• Clock period greater than every 
   combinational delay 

• Change saved state after noise
-inducing logic transitions have
 stopped! 

We’ll use Registers in a highly constrained way to build digital
 systems: 

• Single clock signal shared among
 all clocked devices (one clock
 domain) 

Does that 
symbol 

register? 

6.111 Fall 2008 7 Lecture 4 



D-Register Timing With Skew 

CLKreg1 

logic D Q D Q 

CLK 

reg1 reg2 

tPD,reg1+ tPD,logic 

≥ tSETUP,reg2 

tCD,reg1+tCD,logic 

±skew 

CLKreg2 

In the real world the clock signal 
arrives at different registers at 
different times.  The difference in 
arrival times (pos or neg) is called 
the clock skew tskew. 

We can update our two timing 
constraints to reflect the worst-
case skew: 

tPD,reg1+tPD,logic+ tSETUP,reg2 ≤ tCLK– tskew  

tCD,reg1+tCD,logic ≥ tHOLD,reg2+ tskew  

Thus clock skew increases the 
minimum cycle time of our design 
and makes it harder to meet 
register hold times. 

≥ tHOLD,reg2 

6.111 Fall 2008 8 Lecture 4 

CLKreg2 rising edge might fall 
anywhere in this region. 



Sequential Circuit Timing 

Questions: 
•  Constraints on tCD for the logic? 

•  Minimum clock period? 

•  Setup, Hold times for Inputs? 

Combinational 
Logic 

Current 
State 

New 
State 

Input Output 

Clock tCD,L = ? 
tPD,L = 5ns 

tCD,R = 1ns 
tPD,R = 3ns 
tS,R = 2ns 
tH,R = 2ns 

> 1 ns 

> 10 ns (tPD,R+tPD,L+ tSETUP,R) 

tSETUP,Input = tPD,L +tSETUP,R  
tHOLD,Input = tHOLD,R -tCD,L 

This is a simple Finite State Machine … more on next time! 
6.111 Fall 2008 9 Lecture 4 



The Sequential always Block 
Edge-triggered circuits are described using a sequential always
 block 

module comb(input a, b, sel, 
            output reg out); 

  always @(*) begin 

    if (sel) out = a; 
    else out = b; 
  end     

endmodule 

module seq(input a, b, sel, clk,  
           output reg out); 

  always @(posedge clk) begin 

    if (sel) out <= a; 
    else out <= b; 
  end     

endmodule 

Combinational Sequential 

6.111 Fall 2008 10 Lecture 4 



Note: The following is incorrect syntax: always @(clear or negedge clock)  
If one signal in the sensitivity list uses posedge/negedge, then all signals must. 

  Assign any signal or variable from only one always block. Be wary
 of race conditions: always blocks with same trigger execute
 concurrently…  

Importance of the Sensitivity List 
•  The use of posedge and negedge makes an always block

 sequential (edge-triggered) 
•  Unlike a combinational always block, the sensitivity list does

 determine behavior for synthesis!  

module dff_sync_clear( 
  input d, clearb, clock,  
  output reg q 
); 
  always @(posedge clock) 
    begin 
      if (!clearb) q <= 1'b0; 
      else q <= d;  
    end 
endmodule 

D-Register with synchronous clear D-Register with asynchronous clear 

always block entered only at
 each positive clock edge 

always block entered immediately when
 (active-low) clearb is asserted 

module dff_sync_clear( 
  input d, clearb, clock,  
  output reg q 
); 
  always @(negedge clearb or posedge clock) 
    begin 
      if (!clearb) q <= 1'b0; 
      else q <= d;  
    end 
endmodule 

6.111 Fall 2008 11 Lecture 4 



Blocking vs. Nonblocking Assignments 
•  Verilog supports two types of assignments within always blocks,

 with subtly different behaviors. 
•  Blocking assignment (=): evaluation and assignment are immediate 

always @(*) begin 
  x = a | b;      // 1. evaluate a|b, assign result to x 
  y = a ^ b ^ c;  // 2. evaluate a^b^c, assign result to y 
  z = b & ~c;     // 3. evaluate b&(~c), assign result to z 
end 

Nonblocking assignment (<=): all assignments deferred to end of 
simulation time step after all right-hand sides have been 
evaluated (even those in other active always blocks) 

Sometimes, as above, both produce the same result. Sometimes, not! 

always @(*) begin 
  x <= a | b;     // 1. evaluate a|b, but defer assignment to x 
  y <= a ^ b ^ c; // 2. evaluate a^b^c, but defer assignment to y 
  z <= b & ~c;    // 3. evaluate b&(~c), but defer assignment to z 
  // 4. end of time step: assign new values to x, y and z 
end 

6.111 Fall 2008 12 Lecture 4 



Assignment Styles for Sequential Logic 

Will nonblocking and blocking assignments both produce the
 desired result? (“old” means value before clock edge, “new” means
 the value after most recent assignment) 

module nonblocking( 
  input in, clk, 
  output reg out 
); 
  reg q1, q2; 
  always @(posedge clk) begin 
    q1 <= in; 
    q2 <= q1;   // uses old q1 
    out <= q2;  // uses old q2 
  end     

endmodule 

What we want: 
Register Based

 Digital Delay Line 

module blocking( 
  input in, clk, 
  output reg out 
); 
  reg q1, q2; 
  always @(posedge clk) begin 
    q1 = in; 
    q2 = q1;   // uses new q1 
    out = q2;  // uses new q2 
  end     

endmodule 

6.111 Fall 2008 13 Lecture 4 



Use Nonblocking for Sequential Logic 

“At each rising clock edge, q1, q2, and
 out simultaneously receive the old
 values of in, q1, and q2.”

“At each rising clock edge, q1 = in. �
After that, q2 = q1. �
After that, out = q2. �
Therefore out = in.”

always @(posedge clk) begin 
    q1 <= in; 
    q2 <= q1;   // uses old q1 
    out <= q2;  // uses old q2 
  end     

always @(posedge clk) begin 
    q1 = in; 
    q2 = q1;   // uses new q1 
    out = q2;  // uses new q2 
  end 

• Blocking assignments do not reflect the intrinsic behavior of multi-
stage sequential logic 

• Guideline: use nonblocking assignments for sequential always blocks 

6.111 Fall 2008 14 Lecture 4 



Verilog Events 
IEEE 1364-2001 Verilog Standard: Section 5.3 The stratified event queue 

The Verilog event queue is logically segmented into five different regions.  Events 
are added to any of the five regions but are only removed from the active region.  

1. Events that occur at the current simulation time and can be processed in any order.   
These are the active events.  

2. Events that occur at the current simulation time, but that shall be processed after 
all the active events are processed. These are the inactive events. 

3. Events that have been evaluated during some previous simulation time, but that 
shall be assigned at this simulation time after all the active and inactive events are 
processed.   These are the nonblocking assign update events.  

4. Events that shall be processed after all the active, inactive, and nonblocking assign 
update events are processed. These are the monitor events.  

5. Events that occur at some future simulation time. These are the future events. 
Future events are divided into future inactive events, and future nonblocking 
assignment update events.  

6.111 Fall 2008 15 Lecture 4 



Verilog Execution Semantics 
while (there are events) {  
    if (no active events) {  
        if (there are inactive events) {  
            activate all inactive events;  
        } else if (there are nonblocking assign update events) {  
            activate all nonblocking assign update events;  
        } else if (there are monitor events) {  
            activate all monitor events;  
        } else {  
            advance T to the next event time;  
            activate all inactive events for time T;  
        }  
    }  
    E = any active event;  
    if (E is an update event) {  
        update the modified object;  
        add evaluation events for sensitive processes to event queue;  
    } else { /* E is an evaluation event */  
        evaluate the process;  
        add update events to the event queue;  
    }  
} 

Active events can be processed 
in any order, but update events 
from same always block will 
happen in order.   

A process evaluation might be 
suspended  in favor of other 
processes. 

From Section 5.4 of the 
IEEE 1364-2001 Verilog 
standard. 

6.111 Fall 2008 16 Lecture 4 
For more info see: http://www.sunburst-design.com/papers/CummingsSNUG2002Boston_NBAwithDelays.pdf 



Coding Guidelines 

6.111 Fall 2008 Lecture 1 17 

The following helpful guidelines are from the Cummings paper 
referenced on the previous slide.  If followed, they ensure your 
simulation results will match what they synthesized hardware will 
do: 

1.  When modeling sequential logic, use nonblocking assignments.  
2.  When modeling latches, use nonblocking assignments.  
3.  When modeling combinational logic with an always block, use 

blocking assignments.  
4.  When modeling both sequential and combinational logic within 

the same always block, use nonblocking assignments.  
5.  Do not mix blocking and nonblocking assignments in the same 

always block.  
6.  Do not make assignments to the same variable from more than 

one always block.  
7.  Use $strobe to display values that have been assigned using 

nonblocking assignments.  
8.  Do not make assignments using #0 delays. 



= vs. <= inside always 

module main; 
  reg a,b,clk; 

  initial begin 
    clk = 0; a = 0; b = 1; 
    #10 clk = 1; 
    #10 $display("a=%d b=%d\n",a,b); 
    $finish; 
  end 
endmodule 

always @(posedge clk) a = b; 
always @(posedge clk) b = a; 

always @(posedge clk) begin 
  a = b;   // blocking assignment 
  b = a;   // execute sequentially 
end 

always @(posedge clk) begin 
  a <= b;  // non-blocking assignment 
  b <= a;  // eval all RHSs first 
end 

always @(posedge clk) a <= b; 
always @(posedge clk) b <= a; 

always @(posedge clk) begin 
  a <= b; 
  b = a;   // urk! Be consistent! 
end 

A 

B 

C 

D 

E 

Rule: always change state using <= (e.g., inside always @(posedge clk)…) 

6.111 Fall 2008 18 Lecture 4 



Implementation for on/off button 

module onoff(input button, output reg light); 
  always @(posedge button) light <= ~light; 
endmodule 

button 

light 

6.111 Fall 2008 19 Lecture 4 



Synchronous on/off button 

When designing a system that accepts many inputs it would be hard 
to have input changes serve as the system clock (which input would 
we use?).  So we’ll use a single clock of some fixed frequency and 
have the inputs control what state changes happen on rising clock 
edges. 

For most of our lab designs we’ll use a 27MHz system clock (37ns 
clock period). 

module onoff_sync(input clk, button, 
                  output reg light); 
  always @ (posedge clk) begin 
    if (button) light <= ~light; 
  end 
endmodule 

6.111 Fall 2008 20 Lecture 4 



Resetting to a known state 

Usually one can’t rely on registers powering-on to a particular initial 
state*.  So most designs have a RESET signal that when asserted 
initializes all the state to known, mutually consistent initial values. 

module onoff_sync(input clk, reset, button, 
                  output reg light); 
  always @ (posedge clk) begin 
    if (reset) light <= 0; 
    else if (button) light <= ~light; 
  end 
endmodule 

6.111 Fall 2008 21 Lecture 4 

* Actually, our FPGAs will reset all registers to 0 when the device is 
programmed. But it’s nice to be able to press a reset button to return to a 
known state rather than starting from scratch by reprogramming the 
device. 



Clocks are fast, we’re slow! 

The circuit on the last slide toggles the light on every rising clock 
edge for which button is 1.  But clocks are fast (27MHz!) and our 
fingers are slow, so how do we press the button for just one clock 
edge?  Answer: we can’t, but we can can add some state that 
remembers what button was last clock cycle and then detect the 
clock cycles when button changes from 0 to 1. 

module onoff_sync(input clk, reset, button, 
                  output reg light); 
  reg old_button;  // state of button last clk 
  always @ (posedge clk) begin 
    if (reset) 
      begin light <= 0; old_button <= 0; end 
    else if (old_button==0 && button==1) 
      // button changed from 0 to 1 
      light <= ~light; 
    old_button <= button; 
  end 
endmodule 

6.111 Fall 2008 22 Lecture 4 



Asynchronous Inputs in Sequential Systems 

What about external signals? 

Sequential System 

Clock 

Can’t guarantee 
setup and hold 
times will be met! 

When an asynchronous signal causes a setup/hold 
violation... 

Clock 

Q 
D 

I 

Transition is missed 
on first clock cycle, 
but caught on next 
clock cycle. 

II 

Transition is caught  
on first clock cycle. 

? 

III 

Output is metastable 
for an indeterminate 
amount of time. 

Q: Which cases are problematic? 
6.111 Fall 2008 23 Lecture 4 



Asynchronous Inputs in Sequential Systems 

All of them can be, if more than one happens simultaneously 
within the same circuit. 

Guideline: ensure that external signals directly feed  
exactly one flip-flop 

D Q 
Sequential System 

Clock 

This prevents the possibility of I and II occurring in different places in 
the circuit, but what about metastability? 

D Q 

D Q 

Q0 

Clock 

Clock 

Q1 

Async  
Input 

Clocked   
Synchronous  

System 

6.111 Fall 2008 24 Lecture 4 



Handling Metastability 
•  Preventing metastability turns out to be an impossible problem 
•  High gain of digital devices makes it likely that metastable conditions will

 resolve themselves quickly 
•  Solution to metastability: allow time for signals to stabilize 

How many registers are necessary? 
•  Depends on many design parameters (clock speed, device speeds, …) 
•  In 6.111, a pair of synchronization registers is sufficient 

D Q 
Complicated 

Sequential Logic 
System 

Clock 

D Q D Q 

Can be 
metastable 
right after 
sampling 

Very unlikely to 
be metastable for 
>1 clock cycle 

Extremely unlikely 
to be metastable for 
>2 clock cycle 

6.111 Fall 2008 25 Lecture 4 



One last little problem… 

6.111 Fall 2008 Lecture 4 26 

Mechanical buttons exhibit contact 
“bounce” when they change position, 
leading to multiple output transitions 
before finally stabilizing in the new 
position: 

We need a debouncing circuit! 

// Switch Debounce Module 
// use your system clock for the clock input 
// to produce a synchronous, debounced output 
// DELAY = .01 sec with a 27Mhz clock 
module debounce #(parameter DELAY=270000) 

            (input reset, clock, noisy, 
             output reg clean); 

   reg [18:0] count; 
   reg new; 

   always @(posedge clock) 
     if (reset)    // return to known state 
       begin 

     count <= 0; 
     new <= noisy; 
     clean <= noisy; 

       end 
     else if (noisy != new)   // input changed 
       begin 

     new <= noisy; 
     count <= 0; 

       end 
     else if (count == DELAY) // stable! 
       clean <= new; 
     else                     // waiting… 
       count <= count+1; 

endmodule 



On/off button: final answer 

6.111 Fall 2008 27 Lecture 4 

module onoff_sync(input clk, reset, button_in, 
                  output reg light); 
  // synchronizer 
  reg button,btemp; 
  always @(posedge clk) 
    {button,btemp} <= {btemp,button_in}; 

  // debounce push button 
  wire bpressed; 
  debounce db1(.clock(clk),.reset(reset), 
               .noisy(button),.clean(bpressed)); 

  reg old_bpressed;  // state last clk cycle 
  always @ (posedge clk) begin 
    if (reset) 
      begin light <= 0; old_bpressed <= 0; end 
    else if (old_bpressed==0 && bpressed==1) 
      // button changed from 0 to 1 
      light <= ~light; 
    old_bpressed <= bpressed; 
  end 
endmodule 



Example: A Simple Counter 

0 1 

0 
1 

0 

+1 

enb 
clr 

clk 

// 4-bit counter with enable and synchronous clear 
module counter(input clk,enb,clr, 
               output reg [3:0] count); 
  always @(posedge clk) begin 
    count <= clr ? 4’b0 : (enb ? count+1 : count); 
  end 
endmodule 

count 
4 4 

Isn’ t this a lot like 
Exercise 1 in Lab 2? 

6.111 Fall 2008 28 Lecture 4 


