
Verilog
•  Hardware Description Languages
•  Verilog

 -- structural: modules, instances
 -- dataflow: continuous assignment
 -- sequential behavior: always blocks
 -- pitfalls
 -- other useful features

6.111 Fall 2008 1 Lecture 3

Reminder: Lab #1 due tonight!

Lab Check-off Policies

•  Last check-off is at 10:30p on Thursday. Please don’t assume
 that you can wait until the last minute!

•  No check-offs on Friday, Saturday

•  Sunday check-offs are 1 day late, Monday 2 days late, etc.

•  20%/day late penalty
–  On-time check-off: 5 points
–  Sunday check-off: 4 points
–  …

•  All labs must be checked off (even if for 0 points) before you can
 start your final project. We’ve learned that if you’re struggling
 with the labs, the final project won’t go very well.

6.111 Fall 2008 2 Lecture 3

The Need for HDLs

A specification is an engineering contract that lists all the goals
 for a project:

•  goals include area, power, throughput, latency, functionality, test
 coverage, costs (NREs and piece costs), … Helps you figure out
 when you’re done and how to make engineering tradeoffs. Later
 on, goals help remind everyone (especially management) what was
 agreed to at the outset!

•  top-down design: partition the project into modules with well
-defined interfaces so that each module can be worked on by a
 separate team. Gives the SW types a head start too!
 (Hardware/software codesign is currently all the rage…)

6.111 Fall 2008 3 Lecture 3

The Need for HDLs (cont’d.)

A behavioral model serves as an executable functional
 specification that documents the exact behavior of all the
 individual modules and their interfaces. Since one can run
 tests, this model can be refined and finally verified through
 simulation.

We need a way to talk about what hardware should do without
 actually designing the hardware itself, i.e., we need to
 separate behavior from implementation. We need a

 Hardware Description Language

If we were then able to synthesize an implementation directly
 from the behavioral model, we’d be in good shape!

6.111 Fall 2008 4 Lecture 3

Using an HDL description
So, we have an executable functional specification that

• documents exact behavior of all the modules and their
interfaces

• can be tested & refined until it does what we want

An HDL description is the first step in a mostly automated
process to build an implementation directly from the
behavioral model

Logic Synthesis Place & route HDL
description

Gate
netlist

CPLD
FPGA

Stdcell ASIC •  HDL→ logic
•  map to target library (LUTs)
•  optimize speed, area

•  create floor plan blocks
•  place cells in block
•  route interconnect
•  optimize (iterate!)

Physical design Functional design

6.111 Fall 2008 5 Lecture 3

A Tale of Two HDLs
VHDL Verilog

ADA-like verbose syntax, lots of
 redundancy (which can be good!)

C-like concise syntax

Extensible types and simulation
 engine. Logic representations
 are not built in and have evolved
 with time (IEEE-1164).

Built-in types and logic
 representations. Oddly, this led
 to slightly incompatible simulators
from different vendors.

Design is composed of entities
 each of which can have multiple
 architectures. A configuration
 chooses what architecture is
 used for a given instance of an
 entity.

Design is composed of modules.

Behavioral, dataflow and
 structural modeling.
 Synthesizable subset...

Behavioral, dataflow and
 structural modeling.
 Synthesizable subset...

Harder to learn and use, not
 technology-specific, DoD
 mandate

Easy to learn and use, fast
 simulation, good for hardware
 design

6.111 Fall 2008 6 Lecture 3

Verilog data values

Since we’re describing hardware, we’ll need to represent the
values that can appear on wires. Verilog uses a 4-valued logic:

Value Meaning
0 Logic zero, “low”
1 Logic one, “high”

Z or ? High impedance (tri-state buses)
X Unknown value (simulation)

“X” is used by simulators when a wire hasn’t been initialized to a
known value or when the predicted value is an illegitimate logic
value (e.g., due to contention on a tri-state bus).

Verilog also has the notion of “drive strength” but we can safely
ignore this feature for our purposes.

6.111 Fall 2008 7 Lecture 3

Numeric Constants

Constant values can be specified with a specific width and radix:

123 // default: decimal radix, unspecified width
‘d123 // ‘d = decimal radix
‘h7B // ‘h = hex radix
‘o173 // ‘o = octal radix
‘b111_1011 // ‘b = binary radix, “_” are ignored
‘hxx // can include X, Z or ? in non-decimal constants
16’d5 // 16-bit constant ‘b0000_0000_0000_0101
11’h1X? // 11-bit constant ‘b001_XXXX_ZZZZ

By default constants are unsigned and will be extended with 0’s
on left if need be (if high-order bit is X or Z, the extended bits
will be X or Z too). You can specify a signed constant as follows:

8’shFF // 8-bit twos-complement representation of -1

To be absolutely clear in your intent it’s usually best to explicitly
specify the width and radix.

6.111 Fall 2008 8 Lecture 3

Wires
We have to provide declarations* for all our named wires (aka
“nets”). We can create buses – indexed collections of wires – by
specifying the allowable range of indices in the declaration:

wire a,b,z; // three 1-bit wires
wire [31:0] memdata; // a 32-bit bus
wire [7:0] b1,b2,b3,b4; // four 8-bit buses
wire [W-1:0] input; // parameterized bus

Note that [0:7] and [7:0] are both legitimate but it pays to
develop a convention and stick with it. Common usage is
[MSB:LSB] where MSB > LSB; usually LSB is 0. Note that we can
use an expression in our index declaration but the expression’s
value must be able to be determined at compile time. We can also
build unnamed buses via concatenation:

{b1,b2,b3,b4} // 32-bit bus, b1 is [31:24], b2 is [23:16], …
{4{b1[3:0]},16’h0000} // 32-bit bus, 4 copies of b1[3:0], 16 0’s

* Actually by default undeclared identifiers refer to a 1-bit wire, but this means typos get
you into trouble. Specify “`default_nettype none” at the top of your source files to avoid
this bogus behavior.

6.111 Fall 2008 9 Lecture 3

Basic building block: modules

// 2-to-1 multiplexer with dual-polarity outputs
module mux2(input a,b,sel, output z,zbar);
 wire selbar,z1,z2; // wires internal to the module
 // order doesn’t matter – all statements are
 // executed concurrently!
 not i1(selbar,sel); // inverter, name is “i1”
 and a1(z1,a,selbar); // port order is (out,in1,in2,…)
 and a2(z2,b,sel);
 or o1(z,z1,z2);
 not i2(zbar,z);
endmodule

In Verilog we design modules, one of which will be identified as
our top-level module. Modules usually have named, directional
ports (specified as input, output or inout) which are used to
communicate with the module.

In this example the module’s behavior is specified using Verilog’s
built-in Boolean modules: not, buf, and, nand, or, nor, xor,
xnor. Just say no! We want to specify behavior, not
implementation!

Don’t forget this “;”

6.111 Fall 2008 10 Lecture 3

Continuous assignments

// 2-to-1 multiplexer with dual-polarity outputs
module mux2(input a,b,sel, output z,zbar);
 // again order doesn’t matter (concurrent execution!)
 // syntax is “assign LHS = RHS” where LHS is a wire/bus
 // and RHS is an expression
 assign z = sel ? b : a;
 assign zbar = ~z;
endmodule

If we want to specify a behavior equivalent to combinational logic,
use Verilog’s operators and continuous assignment statements:

Conceptually assign’s are evaluated continuously, so whenever a
value used in the RHS changes, the RHS is re-evaluated and the
value of the wire/bus specified on the LHS is updated.

This type of execution model is called “dataflow” since evaluations
are triggered by data values flowing through the network of wires
and operators.

6.111 Fall 2008 11 Lecture 3

Boolean operators
•  Bitwise operators perform bit-oriented operations on vectors

•  ~(4’b0101) = {~0,~1,~0,~1} = 4’b1010
•  4’b0101 & 4’b0011 = {0&0, 1&0, 0&1, 1&1} = 4’b0001

•  Reduction operators act on each bit of a single input vector
•  &(4’b0101) = 0 & 1 & 0 & 1 = 1’b0

•  Logical operators return one-bit (true/false) results
•  !(4’b0101) = 1’b0

~a NOT

a & b AND

a | b OR

a ^ b XOR

a ~^ b
a ^~ b

XNOR

Bitwise Logical
!a NOT

a && b AND

a || b OR

a == b
a != b

[in]equality
returns x when x
 or z in bits. Else
 returns 0 or 1

a === b
a !== b

case
 [in]equality
 returns 0 or 1

 based on bit by
 bit comparison

&a AND

~&a NAND

|a OR

~|a NOR

^a XOR

~^a
^~a

XNOR

Reduction

Note distinction between ~a and !a
when operating on multi-bit values

6.111 Fall 2008 12 Lecture 3

Other operators

a ? b : c If a then b else c
Conditional

-a negate

a + b add

a - b subtract

a * b multiply

a / b divide

a % b modulus

a ** b exponentiate

a << b logical left shift

a >> b logical right shift

a <<< b arithmetic left shift

a >>> b arithmetic right shift

Arithmetic

a > b greater than

a >= b greater than or equal

a < b Less than

a <= b Less than or equal

Relational

6.111 Fall 2008 13 Lecture 3

Hierarchy: module instances

// 4-to-1 multiplexer
module mux4(input d0,d1,d2,d3, input [1:0] sel, output z);
 wire z1,z2;
 // instances must have unique names within current module.
 // connections are made using .portname(expression) syntax.
 // once again order doesn’t matter…
 mux2 m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1)); // not using zbar
 mux2 m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2));
 mux2 m3(.sel(sel[1]),.a(z1),.b(z2),.z(z));
 // could also write “mux2 m3(z1,z2,sel[1],z,)” NOT A GOOD IDEA!
endmodule

Our descriptions are often hierarchical, where a module’s
behavior is specified by a circuit of module instances:

Connections to a module’s ports are made using a syntax that
specifies both the port name and the wire(s) that connects to it,
so ordering of the ports doesn’t have to be remembered.

This type of hierarchical behavioral model is called “structural”
since we’re building up a structure of instances connected by
wires. We often mix dataflow and structural modeling when
describing a module’s behavior.

6.111 Fall 2008 14 Lecture 3

Parameterized modules
// 2-to-1 multiplexer, W-bit data
module mux2 #(parameter W=1) // data width, default 1 bit
 (input [W-1:0] a,b,
 input sel,
 output [W-1:0] z);
 assign z = sel ? b : a;
 assign zbar = ~z;
endmodule

// 4-to-1 multiplexer, W-bit data
module mux4 #(parameter W=1) // data width, default 1 bit
 (input [W-1:0] d0,d1,d2,d3,
 input [1:0] sel,
 output [W-1:0] z);
 wire [W-1:0] z1,z2;

 mux2 #(.W(W)) m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1));
 mux2 #(.W(W)) m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2));
 mux2 #(.W(W)) m3(.sel(sel[1]),.a(z1),.b(z2),.z(z));
endmodule

could be an expression evaluable at compile time;
if parameter not specified, default value is used

6.111 Fall 2008 15 Lecture 3

Sequential behaviors

// 4-to-1 multiplexer
module mux4(input a,b,c,d, input [1:0] sel, output reg z,zbar);
 always @(*) begin
 if (sel == 2’b00) z = a;
 else if (sel == 2’b01) z = b;
 else if (sel == 2’b10) z = c;
 else if (sel == 2’b11) z = d;
 else z = 1’bx; // when sel is X or Z
 // statement order matters inside always blocks
 // so the following assignment happens *after* the
 // if statement has been evaluated
 zbar = ~z;
 end
endmodule

There are times when we’d like to use sequential semantics and
more powerful control structures – these are available inside
sequential always blocks:

always @(*) blocks are evaluated whenever any value used inside
changes. Equivalently we could have written

always @(a, b, c, d, sel) begin … end // careful, prone to error!

6.111 Fall 2008 16 Lecture 3

reg vs wire
We’ve been using wire declarations when naming nets (ports are
declared as wires by default). However nets appearing on the
LHS of assignment statements inside of always blocks must be
declared as type reg.

I don’t why Verilog has this rule! I think it’s because
traditionally always blocks were used for sequential logic (the
topic of next lecture) which led to the synthesis of hardware
registers instead of simply wires. So this seemingly
unnecessary rule really supports historical usage – the
declaration would help the reader distinguish registered
values from combinational values.

We can add the reg keyword to output or inout ports (we
wouldn’t be assigning values to input ports!), or we can declare
nets using reg instead of wire.

output reg [15:0] result // 16-bit output bus assigned in always block
reg flipflop; // declaration of 1-bit net of type reg

6.111 Fall 2008 17 Lecture 3

Case statements

// 4-to-1 multiplexer
module mux4(input a,b,c,d, input [1:0] sel, output reg z,zbar);
 always @(*) begin
 case (sel)
 2’b00: z = a;
 2’b01: z = b;
 2’b10: z = c;
 2’b11: z = d;
 default: z = 1’bx; // in case sel is X or Z
 endcase
 zbar = ~z;
 end
endmodule

Chains of if-then-else statements aren’t the best way to indicate
the intent to provide an alternative action for every possible
control value. Instead use case:

case looks for an exact bit-by-bit match of the value of the case
expression (e.g., sel) against each case item, working through the
items in the specified order. casex/casez statements treat X/Z
values in the selectors as don’t cares when doing the matching
that determines which clause will be executed.

6.111 Fall 2008 18 Lecture 3

Unintentional creation of state

// 3-to-1 multiplexer ????
module mux3(input a,b,c, input [1:0] sel, output reg z);
 always @(*) begin
 case (sel)
 2’b00: z = a;
 2’b01: z = b;
 2’b10: z = c;
 // if sel is 2’b11, no assignment to z!!??
 endcase
 end
endmodule

Suppose there are multiple execution paths inside an always
block, i.e., it contains if or case statements, and that on some
paths a net is assigned and on others it isn’t.

So sometimes z changes and sometimes it doesn’t (and hence
keeps its old value). That means the synthesized hardware has to
have a way of remembering the state of z (i.e., it’s old value) since
it’s no longer just a combinational function of sel, a, b, and c.
We’ll talk about such hardware in the next lecture; meanwhile
that wasn’t what we intended here.

6.111 Fall 2008 19 Lecture 3

Keeping logic combinational

// 3-to-1 multiplexer
module mux3(input a,b,c, input [1:0] sel, output reg z);
 always @ (*) begin
 z = 1’bx; // a second assignment may happen below
 case (sel)
 2’b00: z = a;
 2’b01: z = b;
 2’b10: z = c;
 endcase
 end
endmodule

To avoid the unintentional creation of state, ensure that each
variable that’s assigned in an always block always gets assigned a
new value at least once on every possible execution path.

It’s good practice when writing combinational always blocks to
provide a default: clause for each case statement and an else
clause for each if statement.

6.111 Fall 2008 20 Lecture 3

Other useful Verilog features
•  Additional control structures: for, while, repeat, forever
•  Procedure-like constructs: functions, tasks
•  One-time-only initialization: initial blocks
•  Compile-time computations: generate, genvar
•  System tasks to help write simulation test jigs

–  Stop the simulation: $finish(…)
–  Print out text, values: $display(…)
–  Initialize memory from a file: $readmemh(…), $readmemb(…)
–  Capture simulation values: $dumpfile(…), $dumpvars(…)
–  Explicit time delays: #nnn

•  Compiler directives
–  Macro definitions: `define
–  Conditional compilation: `ifdef, …
–  Include other source files: `include
–  Control simulation time units: `timescale
–  No implicit net declarations: `default_nettype none

6.111 Fall 2008 21 Lecture 3

