
Verilog 
•  Hardware Description Languages 
•  Verilog 

  -- structural: modules, instances 
  -- dataflow: continuous assignment 
  -- sequential behavior: always blocks 
  -- pitfalls 
  -- other useful features 
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Reminder: Lab #1 due tonight! 



Lab Check-off Policies 

•  Last check-off is at 10:30p on Thursday.  Please don’t assume
 that you can wait until the last minute! 

•  No check-offs on Friday, Saturday 

•  Sunday check-offs are 1 day late, Monday 2 days late, etc. 

•  20%/day late penalty 
–  On-time check-off: 5 points 
–  Sunday check-off: 4 points 
–  … 

•  All labs must be checked off (even if for 0 points) before you can
 start your final project.  We’ve learned that if you’re struggling
 with the labs, the final project won’t go very well. 
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The Need for HDLs 

A specification is an engineering contract that lists all the goals
 for a project: 

•  goals include area, power, throughput, latency, functionality, test
 coverage, costs (NREs and piece costs), …   Helps you figure out
 when you’re done and how to make engineering tradeoffs.  Later
 on, goals help remind everyone (especially management) what was
 agreed to at the outset! 

•  top-down design: partition the project into modules with well
-defined interfaces so that each module can be worked on by a
 separate team.   Gives the SW types a head start too! 
 (Hardware/software codesign is currently all the rage…) 
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The Need for HDLs (cont’d.) 

A behavioral model serves as an executable functional
 specification that documents the exact behavior of all the
 individual modules and their interfaces.  Since one can run
 tests, this model can be refined and finally verified through
 simulation. 

We need a way to talk about what hardware should do without
 actually designing the hardware itself, i.e., we need to
 separate behavior from implementation.  We need a  

                       Hardware Description Language 

If we were then able to synthesize an implementation directly
 from the behavioral model, we’d be in good shape! 
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Using an HDL description 
So, we have an executable functional specification that 

• documents exact behavior of all the modules and their 
interfaces 

• can be tested & refined until it does what we want 

An HDL description is the first step in a mostly automated 
process to build an implementation directly from the 
behavioral model 

Logic Synthesis Place & route HDL 
description 

Gate 
netlist 

CPLD 
FPGA 

Stdcell ASIC •  HDL→ logic 
•  map to target library (LUTs) 
•  optimize speed, area 

•  create floor plan blocks 
•  place cells in block 
•  route interconnect 
•  optimize (iterate!) 

Physical design Functional design 
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A Tale of Two HDLs 
VHDL Verilog 

ADA-like verbose syntax, lots of
 redundancy (which can be good!) 

C-like concise syntax 

Extensible types and simulation
 engine.  Logic representations
 are not built in and have evolved
 with time (IEEE-1164). 

Built-in types and logic
 representations.  Oddly, this led
 to slightly incompatible simulators 
from different vendors. 

Design is composed of entities
 each of which can have multiple
 architectures. A configuration
 chooses what architecture is
 used for a given instance of an
 entity. 

Design is composed of modules. 

Behavioral, dataflow and
 structural modeling.
 Synthesizable subset... 

Behavioral, dataflow and
 structural modeling.
 Synthesizable subset... 

Harder to learn and use, not
 technology-specific, DoD
 mandate 

Easy to learn and use, fast
 simulation, good for hardware
 design 
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Verilog data values 

Since we’re describing hardware, we’ll need to represent the 
values that can appear on wires.  Verilog uses a 4-valued logic: 

Value Meaning 
0 Logic zero, “low” 
1 Logic one, “high” 

Z or ? High impedance (tri-state buses) 
X Unknown value (simulation) 

“X” is used by simulators when a wire hasn’t been initialized to a 
known value or when the predicted value is an illegitimate logic 
value (e.g., due to contention on a tri-state bus). 

Verilog also has the notion of “drive strength” but we can safely 
ignore this feature for our purposes. 
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Numeric Constants 

Constant values can be specified with a specific width and radix: 

123         // default: decimal radix, unspecified width 
‘d123       // ‘d = decimal radix 
‘h7B        // ‘h = hex radix 
‘o173       // ‘o = octal radix 
‘b111_1011  // ‘b = binary radix, “_” are ignored 
‘hxx        // can include X, Z or ? in non-decimal constants 
16’d5       // 16-bit constant ‘b0000_0000_0000_0101 
11’h1X?     // 11-bit constant ‘b001_XXXX_ZZZZ 

By default constants are unsigned and will be extended with 0’s 
on left if need be (if high-order bit is X or Z, the extended bits 
will be X or Z too).  You can specify a signed constant as follows: 

8’shFF      // 8-bit twos-complement representation of -1 

To be absolutely clear in your intent it’s usually best to explicitly 
specify the width and radix. 
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Wires 
We have to provide declarations* for all our named wires (aka 
“nets”).   We can create buses – indexed collections of wires – by 
specifying the allowable range of indices in the declaration: 

wire a,b,z;              // three 1-bit wires 
wire [31:0] memdata;     // a 32-bit bus 
wire [7:0] b1,b2,b3,b4;  // four 8-bit buses 
wire [W-1:0] input;      // parameterized bus 

Note that [0:7] and [7:0] are both legitimate but it pays to 
develop a convention and stick with it.  Common usage is 
[MSB:LSB] where MSB > LSB; usually LSB is 0.  Note that we can 
use an expression in our index declaration but the expression’s 
value must be able to be determined at compile time.  We can also 
build unnamed buses via concatenation: 

{b1,b2,b3,b4}  // 32-bit bus, b1 is [31:24], b2 is [23:16], … 
{4{b1[3:0]},16’h0000}  // 32-bit bus, 4 copies of b1[3:0], 16 0’s 

* Actually by default undeclared identifiers refer to a 1-bit wire, but this means typos get 
you into trouble.  Specify “`default_nettype none” at the top of your source files to avoid 
this bogus behavior. 
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Basic building block: modules 

// 2-to-1 multiplexer with dual-polarity outputs 
module mux2(input a,b,sel, output z,zbar); 
  wire selbar,z1,z2;    // wires internal to the module 
  // order doesn’t matter – all statements are 
  // executed concurrently! 
  not i1(selbar,sel);   // inverter, name is “i1” 
  and a1(z1,a,selbar);  // port order is (out,in1,in2,…) 
  and a2(z2,b,sel); 
  or  o1(z,z1,z2); 
  not i2(zbar,z); 
endmodule 

In Verilog we design modules, one of which will be identified as 
our top-level module.  Modules usually have named, directional 
ports (specified as input, output or inout) which are used to 
communicate with the module. 

In this example the module’s behavior is specified using Verilog’s 
built-in Boolean modules: not, buf, and, nand, or, nor, xor, 
xnor.  Just say no!  We want to specify behavior, not 
implementation! 

Don’t forget this “;” 
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Continuous assignments 

// 2-to-1 multiplexer with dual-polarity outputs 
module mux2(input a,b,sel, output z,zbar); 
  // again order doesn’t matter (concurrent execution!) 
  // syntax is “assign LHS = RHS” where LHS is a wire/bus 
  // and RHS is an expression 
  assign z = sel ? b : a; 
  assign zbar = ~z; 
endmodule 

If we want to specify a behavior equivalent to combinational logic, 
use Verilog’s operators and continuous assignment statements: 

Conceptually assign’s are evaluated continuously, so whenever a 
value used in the RHS changes, the RHS is re-evaluated and the 
value of the wire/bus  specified on the LHS is updated. 

This type of execution model is called “dataflow” since evaluations 
are triggered by data values flowing through the network of wires 
and operators. 
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Boolean operators 
•  Bitwise operators perform bit-oriented operations on vectors 

•   ~(4’b0101) = {~0,~1,~0,~1} = 4’b1010 
•  4’b0101 & 4’b0011 = {0&0, 1&0, 0&1, 1&1} = 4’b0001 

•  Reduction operators act on each bit of a single input vector 
•   &(4’b0101) = 0 & 1 & 0 & 1 = 1’b0 

•  Logical operators return one-bit (true/false) results 
•   !(4’b0101) = 1’b0 

~a NOT 

a & b AND 

a | b OR 

a ^ b XOR 

a ~^ b 
a ^~ b 

XNOR 

Bitwise Logical 
!a NOT 

a && b AND 

a || b OR 

a == b 
a != b 

[in]equality 
returns x when x
 or z in bits. Else
 returns 0 or 1 

a === b 
a !== b 

case
 [in]equality 
 returns 0 or 1

 based on bit by
 bit comparison 

&a AND 

~&a NAND 

|a OR 

~|a NOR 

^a XOR 

~^a 
^~a 

XNOR 

Reduction 

Note distinction between ~a and !a 
when operating on multi-bit values 
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Other operators 

a ? b : c If a then b else c 
Conditional 

-a negate 

a + b add 

a - b subtract 

a * b multiply 

a / b divide 

a % b modulus 

a ** b exponentiate 

a << b logical left shift 

a >> b logical right shift 

a <<< b arithmetic left shift 

a >>> b arithmetic right shift 

Arithmetic 

a > b greater than 

a >= b greater than or equal 

a < b Less than 

a <= b Less than or equal 

Relational 
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Hierarchy: module instances 

// 4-to-1 multiplexer 
module mux4(input d0,d1,d2,d3, input [1:0] sel, output z); 
  wire z1,z2; 
  // instances must have unique names within current module. 
  // connections are made using .portname(expression) syntax. 
  // once again order doesn’t matter… 
  mux2 m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1));  // not using zbar 
  mux2 m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2)); 
  mux2 m3(.sel(sel[1]),.a(z1),.b(z2),.z(z)); 
  // could also write “mux2 m3(z1,z2,sel[1],z,)” NOT A GOOD IDEA! 
endmodule 

Our descriptions are often hierarchical, where a module’s 
behavior is specified by a circuit of module instances: 

Connections to a module’s ports are made using a syntax that 
specifies both the port name and the wire(s) that connects to it, 
so ordering of the ports doesn’t have to be remembered.  

This type of hierarchical behavioral model is called “structural” 
since we’re building up a structure of instances connected by 
wires.  We often mix dataflow and structural modeling when 
describing a module’s behavior. 
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Parameterized modules 
// 2-to-1 multiplexer, W-bit data 
module mux2 #(parameter W=1)  // data width, default 1 bit 
            (input [W-1:0] a,b, 
             input sel, 
             output [W-1:0] z); 
  assign z = sel ? b : a; 
  assign zbar = ~z; 
endmodule 

// 4-to-1 multiplexer, W-bit data 
module mux4 #(parameter W=1)  // data width, default 1 bit 
            (input [W-1:0] d0,d1,d2,d3, 
             input [1:0] sel, 
             output [W-1:0] z); 
  wire [W-1:0] z1,z2; 

  mux2 #(.W(W)) m1(.sel(sel[0]),.a(d0),.b(d1),.z(z1)); 
  mux2 #(.W(W)) m2(.sel(sel[0]),.a(d2),.b(d3),.z(z2)); 
  mux2 #(.W(W)) m3(.sel(sel[1]),.a(z1),.b(z2),.z(z)); 
endmodule 

could be an expression evaluable at compile time; 
if parameter not specified, default value is used 
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Sequential behaviors 

// 4-to-1 multiplexer 
module mux4(input a,b,c,d, input [1:0] sel, output reg z,zbar); 
  always @(*) begin 
    if (sel == 2’b00) z = a; 
    else if (sel == 2’b01) z = b; 
    else if (sel == 2’b10) z = c; 
    else if (sel == 2’b11) z = d; 
    else z = 1’bx;   // when sel is X or Z 
    // statement order matters inside always blocks 
    // so the following assignment happens *after* the  
    // if statement has been evaluated 
    zbar = ~z; 
  end 
endmodule 

There are times when we’d like to use sequential semantics and 
more powerful control structures – these are available inside 
sequential always blocks: 

always @(*) blocks are evaluated whenever any value used inside 
changes.  Equivalently we could have written 

always @(a, b, c, d, sel) begin … end   // careful, prone to error! 
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reg vs wire 
We’ve been using wire declarations when naming nets (ports are 
declared as wires by default).  However nets appearing on the 
LHS of assignment statements inside of always blocks must be 
declared as type reg. 

I don’t why Verilog has this rule!  I think it’s because 
traditionally always blocks were used for sequential logic (the 
topic of next lecture) which led to the synthesis of hardware 
registers instead of simply wires.  So this seemingly 
unnecessary rule really supports historical usage – the 
declaration would help the reader distinguish registered 
values from combinational values. 

We can add the reg keyword to output or inout ports (we 
wouldn’t be assigning values to input ports!), or we can declare 
nets using reg instead of wire. 

output reg [15:0] result   // 16-bit output bus assigned in always block 
reg flipflop;              // declaration of 1-bit net of type reg 
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Case statements 

// 4-to-1 multiplexer 
module mux4(input a,b,c,d, input [1:0] sel, output reg z,zbar); 
  always @(*) begin 
    case (sel) 
      2’b00: z = a; 
      2’b01: z = b; 
      2’b10: z = c; 
      2’b11: z = d; 
      default: z = 1’bx;  // in case sel is X or Z 
    endcase 
    zbar = ~z; 
  end 
endmodule 

Chains of if-then-else statements aren’t the best way to indicate 
the intent to provide an alternative action for every possible 
control value.  Instead use case: 

case looks for an exact bit-by-bit match of the value of the case 
expression (e.g., sel) against each case item, working through the 
items in the specified order. casex/casez statements treat X/Z 
values in the selectors as don’t cares when doing the matching 
that determines which clause will be executed. 
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Unintentional creation of state 

// 3-to-1 multiplexer ???? 
module mux3(input a,b,c, input [1:0] sel, output reg z); 
  always @(*) begin 
    case (sel) 
      2’b00: z = a; 
      2’b01: z = b; 
      2’b10: z = c; 
      // if sel is 2’b11, no assignment to z!!?? 
    endcase 
  end 
endmodule 

Suppose there are multiple execution paths inside an always 
block, i.e., it contains if or case statements, and that on some 
paths a net is assigned and on others it isn’t. 

So sometimes z changes and sometimes it doesn’t (and hence 
keeps its old value).  That means the synthesized hardware has to 
have a way of remembering the state of z (i.e., it’s old value) since 
it’s no longer just a combinational function of sel, a, b, and c.   
We’ll talk about such hardware in the next lecture; meanwhile 
that wasn’t what we intended here. 
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Keeping logic combinational 

// 3-to-1 multiplexer 
module mux3(input a,b,c, input [1:0] sel, output reg z); 
  always @ (*) begin 
    z = 1’bx;    // a second assignment may happen below 
    case (sel) 
      2’b00: z = a; 
      2’b01: z = b; 
      2’b10: z = c; 
    endcase 
  end 
endmodule 

To avoid the unintentional creation of state, ensure that each 
variable that’s assigned in an always block always gets assigned a 
new value at least once on every possible execution path. 

It’s good practice when writing combinational always blocks to 
provide a default: clause for each case statement and an else 
clause for each if statement. 

6.111 Fall 2008 20 Lecture 3 



Other useful Verilog features 
•  Additional control structures: for, while, repeat, forever 
•  Procedure-like constructs: functions, tasks 
•  One-time-only initialization: initial blocks 
•  Compile-time computations: generate, genvar 
•  System tasks to help write simulation test jigs 

–  Stop the simulation: $finish(…) 
–  Print out text, values: $display(…) 
–  Initialize memory from a file: $readmemh(…), $readmemb(…) 
–  Capture simulation values: $dumpfile(…), $dumpvars(…) 
–  Explicit time delays: #nnn 

•  Compiler directives 
–  Macro definitions: `define 
–  Conditional compilation: `ifdef, … 
–  Include other source files: `include 
–  Control simulation time units: `timescale 
–  No implicit net declarations: `default_nettype none 
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