

Logic Synthesis

- Truth tables and sum-of-products
- Primitive logic gates, universal gates
- Logic simplification
- Karnaugh Maps, Quine-McCluskey
- General implementation techniques: muxes and look-up tables (LUTs)

Reminder: Lab \#1 due this Thursday!

Functional Specifications

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3 binary inputs
so $2^{3}=8$ rows in our truth table
An concise, unambiguous technique for giving the functional specification of a combinational device is to use a truth table to specify the output value for each possible combination of input values (N binary inputs $\rightarrow 2^{\mathrm{N}}$ possible combinations of input values).

Here's a Design Approach

1. Write out our functional spec as a truth table

A	B	C	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2. Write down a Boolean expression with terms covering each '1' in the output:

$$
Y=\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}+A \cdot B \cdot C
$$

This approach creates equations of a particular form called

SUM-OF-PRODUCTS

-it's systematic!
-it works!
-it's easy!
-are we done yet???
is

S-O-P Building Blocks

INVERTER:

AND:

A	Z
0	1
1	0

A	B	Z
0	0	0
0	1	0
1	0	0
1	1	1

A	B	Z
0	0	0
0	1	1
1	0	1
1	1	1

Straightforward Synthesis

We can use
SUM-OF-PRODUCTS
to implement any logic function.

Only need 3 gate types: INVERTER, AND, OR

Propagation delay:

- 3 levels of logic
- No more than 3 gate delays assuming gates with an arbitrary number of inputs. But, in general, we'll only be able to use gates with a bounded number of inputs (bound is ~ 4 for most logic families).

ANDs and ORs with > 2 inputs

SOP w/ 2-input gates

Previous example restricted to 2-input gates:

Using the timing specs given to the left, what are $t_{P D}$ and $t_{C D}$ for this

	INV	AND2	OR2
$\dagger_{\text {pD }}$	$8 p s$	$15 p s$	18 ps
$\dagger_{c D}$	$1 p s$	$3 p s$	$3 p s$

Hint: to find overall $t_{\text {pD }}$ we need to find max $t_{p D}$ considering all paths from inputs to outputs.

More Building Blocks

NAND (not AND)	A	B	Z	NOR (not OR)	A	B	Z
	0	0	1		0	0	1
$\mathrm{A}-\square$	0	1	1	A $-\square$	0	1	0
$\mathrm{B}-\square-\mathrm{Z}=A \cdot B$	1	0	1	$\mathrm{B}-\int-\mathrm{z}=A+B$	1	0	0
	1	1	0		1	1	0

CMOS gates are naturally inverting so we want to use NANDs and NORs in CMOS designs...

XOR (exclusive OR)	A		Z	XOR is very useful when implementing parity and arithmetic logic. Also used as a "programmable inverter": if $A=0$, $Z=B$; if $A=1, Z=\sim B$ Wide fan-in XORs can be created with chains or trees of 2-input XORs.	
	0		0		
¢- $\mathrm{Z}=A \oplus B$	0		1		
			1		
			0		

Universal Building Blocks

NANDs and NORs are universal:

Any logic function can be implemented using only NANDs (or, equivalently, NORs). Note that chaining/treeing technique doesn't work directly for creating wide fan-in NAND or NOR gates. But wide fan-in gates can be created with trees involving both NANDs, NORs and inverters.

SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of De Morgan's laws:

NAND form: $\overline{A \cdot B}=\bar{A}+\bar{B}$
NOR form: $\quad \overline{A+B}=\bar{A} \cdot \bar{B}$

De Morgan-ized NOR symbol
So the following "SOP" circuits are all equivalent (note the use of De Morgan-ized symbols to make the inversions less confusing):

AND/OR form

NAND/NAND form
This will be handy in Lab 1 since you'll be able to use just 7400's to implement your circuit!

NOR/NOR form
All these "extra" inverters may seem less than ideal but often the buffering they provide will reduce the capacitive load on the inputs and increase the output drive.

Logic Simplification

- Can we implement the same function with fewer gates? Before trying we'll add a few more tricks in our bag.
- BOOLEAN ALGEBRA:

OR rules: $\quad a+1=1 \quad a+0=a \quad a+a=a$
AND rules: $\quad a \cdot 1=1 \quad a \cdot 0=a \quad a \cdot a=a$
Commutative: $\quad a+b=b+a \quad a \cdot b=b \cdot a$
Associative: $\quad(a+b)+c=a+(b+c) \quad(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Distributive: $\quad a \cdot(b+c)=a \cdot b+a \cdot c \quad a+b \cdot c=(a+b) \cdot(a+c)$
Complements: $\quad a+\bar{a}=1 \quad a \cdot \bar{a}=0$
Absorption: $\quad a+a \cdot b=a \quad a+\bar{a} \cdot b=a+b \quad a \cdot(a+b)=a \quad a \cdot(\bar{a}+b)=a \cdot b$
De Morgan's Law: $\overline{a \cdot b}=\bar{a}+\bar{b} \quad \overline{a+b}=\bar{a} \cdot \bar{b}$
Reduction:
$a \cdot b+\bar{a} \cdot b=b \quad(a+b) \cdot(\bar{a}+b)=b$

Key to simplification: equations that match the pattern of the LHS (where " b " might be any expression) tell us that when " b " is true, the value of " a " doesn't matter. So " a " can be eliminated from the equation, getting rid of two 2-input ANDs and one 2-input OR.

Boolean Minimization:

An Algebraic Approach

Lets simplify the equation from slide \#3:

$$
Y=\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}+A \cdot B \cdot C
$$

Using the identity

$$
\alpha A+\alpha \bar{A}=\alpha
$$

For any expression α and variable A :

$$
Y=\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}+A \cdot B \cdot C
$$

The tricky part: some terms participate in more than one reduction so can't do the algebraic steps one at a time!

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one variable are adjacent to one another so we can see potential reductions easily.

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Here's the layout of a 3-variable K-map filled in with the values from our truth table:

Why did he shade that row Gray?

On to Hyperspace

Here's a 4-variable K-map:

	$A B$					
	00	01	11	10		
00	1	0	0	1		
01	0	0	0	0		
	11	1	1	0	1	
10	1	1	0	1		

Again it's cyclic. The left edge is adjacent to the right edge, and the top is adjacent to the bottom.

We run out of steam at 4 variables - K-maps are hard to draw and use in three dimensions (5 or 6 variables) and we're not equipped to use higher dimensions (> 6 variables)!

Finding Subcubes

We can identify clusters of "irrelevent" variables by circling adjacent subcubes of 1 s . A subcube is just a lower dimensional cube.

							$A B$				
	00	01	11	10							
00	1	0	0	1							
	01	0	0	0							

Three 2×2 subcubes

The best strategy is generally a greedy one.

- Circle the largest N-dimensional subcube (2^{N} adjacent 1 's)

$$
4 \times 4,4 \times 2,4 \times 1,2 \times 2,2 \times 1,1 \times 1
$$

- Continue circling the largest remaining subcubes
(even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

Write Down Equations

Write down a product term for the portion of each cluster/subcube that is invariant. You only need to include enough terms so that all the 1's are covered. Result: a minimal sum of products expression for the truth table.

We're done!

Two-Level Boolean Minimization

Two-level Boolean minimization is used to find a sum-of-products representation for a multiple-output Boolean function that is optimum according to a given cost function. The typical cost functions used are the number of product terms in a two-level realization, the number of literals, or a combination of both. The two steps in two-level Boolean minimization are:
-Generation of the set of prime product-terms for a given function.

- Selection of a minimum set of prime terms to implement the function.

We will briefly describe the Quine-McCluskey method which was the first algorithmic method proposed for two-level minimization and which follows the two steps outlined above. State-of-the-art logic minimization algorithms are all based on the Quine-McCluskey method and also follow the two steps above.

Prime Term Generation

Start by expressing your Boolean function using 0terms (product terms with no don't care care entries).
For compactness the table for example 4-input, 1output function $F(w, x, y, z)$ shown to the right includes only entries where the output of the function is 1 and we've labeled each entry with it's decimal equivalent.

W	X	Y	Z	label
0	0	0	0	0
0	1	0	1	5
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	1	0	14
1	1	1	1	15

Look for pairs of 0-terms that differ in only one bit position and merge them in a 1-term (i.e., a term that has exactly one '-' entry). Next 1-terms are examined in pairs to see if the can be merged into 2-terms, etc. Mark k-terms that get merged into ($k+1$) terms so we can discard them later.

Prime Term Table

An " X " in the prime term table in row R and column C signifies that the 0 term corresponding to row R is contained by the prime corresponding to column C.

Goal: select the minimum set of primes (columns) such that there is at least one " X " in every row. This is the classical minimum covering problem.

Each row with a single X signifies an essential prime term since any prime implementation will have to include that prime term because the corresponding 0 -term is not contained in any other prime.

In this example the essential primes "cover" all the 0-terms.

Dominated Columns

Some functions may not have essential primes (Fig. 1), so make arbitrary selection of first prime in cover, say A (Fig. 2). A column U of a prime term table dominates V if U contains every row contained in V . Delete the dominated columns (Fig. 3).

1. Prime table

2. Table with A selected

3. Table with B \& H removed

This gives a prime cover of $\{A, C, E, G\}$. Now backtrack to our choice of A and explore a different (arbitrary) first choice; repeat, remembering minimum cover found during search.

The Quine-McCluskey Method

The input to the procedure is the prime term table T.

1. Delete the dominated primes (columns) in T. Detect essential primes in T by checking to see if any 0 -term is contained by a single prime. Add these essential primes to the selected set. Repeat until no new essential primes are detected.
2. If the size of the selected set of primes equals or exceeds the best solution thus far return from this level of recursion. If there are no elements left to be contained, declare the selected set as the best solution recorded thus far.
3. Heuristically select a prime.
4. Add the chosen prime to the selected set and create a new table by deleting the prime and all 0 -terms that are contained by this prime in the original table. Set T to this new table and go to Step 1.

Then, create a new table by deleting the chosen prime from the original table without adding it to the selected set. No 0 -terms are deleted from the original table. Set T to this new table and go to Step 1.

The good news: this technique generalizes to multi-output functions. The bad news: the search time grows as $2^{\wedge}\left(2^{\wedge} N\right)$ where N is the number of inputs. So most modern minimization systems use heuristics to make dramatic reductions in the processing time.

Logic that defies SOP simplification

> Full Adder
> $S=\bar{A} \cdot B \cdot \bar{C}+A \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+A \cdot B \cdot C=A \oplus B \oplus C$
> $C_{o}=A \cdot C+B \cdot C+A \cdot B$

The sum S doesn't have a simple sum-of-products implementation even though it can be implemented using only two 2 -input XOR gates.

Logic Synthesis Using MUXes

Systematic Implementation of Combinational Logic

Consider implementation of some arbitrary Boolean function, $F(A, B)$
... using a MULTIPLEXER as the only circuit element:

Systematic Implementation of Combinational Logic

Same function as on previous slide, but this time let's use a 4-input mux

A	B	C	y		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	1		
1	0	1	0		
1	1	0	1		
1	1	1	1	$\xrightarrow{$	Full-Adder
:---:					
Carry Out Logic	$}$				

Xilinx Virtex II FPGA

Virtex-II Architecture Overview
XC2V6000:

- 957 pins, 684 IOBs
- CLB array: 88 cols $\times 96 / \mathrm{col}=8448$ CLBs
- 18 Kbit BRAMs $=6$ cols $\times 24 / \mathrm{col}=144$ BRAMs $=2.5 \mathrm{Mbits}$
- 18×18 multipliers $=6$ cols $\times 24 / \mathrm{col}=144$ multipliers

Virtex II CLB

16 bits of RAM which can be configured as a 16×1 single- or dual-port RAM, a 16-bit shift register, or a 16-location lookup table

Figures from Xilinx Virtex II datasheet

Virtex II Slice Schematic

Virtex II Sum-of-products

Horizontal Cascade Chain

Figures from Xilinx Virtex II datasheet

