
Logic Synthesis 
•  Truth tables and sum-of-products 
•  Primitive logic gates, universal gates 
•  Logic simplification 
•  Karnaugh Maps, Quine-McCluskey 
•  General implementation techniques:  

 muxes and look-up tables (LUTs) 
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Reminder: Lab #1 due this Thursday! 



Functional Specifications 

Output “1” if at  
least 2 out of 3 of 
my inputs are a “1”. 

Otherwise, output “0”. 
I will generate a valid 
output in no more than 

2 minutes after  
seeing valid inputs 

input A 
input B 
input C 

output Y 

A B C Y 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

An concise, unambiguous technique for giving the functional 
specification of a combinational device is to use a truth table to 
specify the output value for each possible combination of input values 
(N binary inputs -> 2N possible combinations of input values). 

3 binary inputs 
so 23 = 8 rows in our truth table 

6.111 Fall 2008 2 Lecture 2 



Here’s a Design Approach 

-it’s systematic! 
-it works! 
-it’s easy! 
-are we done yet??? 

1.  Write out our functional spec as a truth 
table 

2.  Write down a Boolean expression with 
terms covering  each ‘1’ in the output: 

This approach creates equations of a 
particular form called 

SUM-OF-PRODUCTS 

Sum (+): ORs 
Products (•): ANDs 

€ 

Y = A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C

A B C Y 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 
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S-O-P Building Blocks 

INVERTER: 

€ 

= A 

A Z 
0 1 
1 0 

AND: 

€ 

= A ⋅ B

A B Z 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

OR: 

€ 

= A + B

A B Z 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

Bubble indicates 
inversion 
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Straightforward Synthesis 

We can use 
 SUM-OF-PRODUCTS 

to implement any logic 
function. 

Only need 3 gate types: 
   INVERTER, AND, OR 

Propagation delay: 
•  3 levels of logic 
•  No more than 3 gate delays assuming gates with an arbitrary 

number of inputs.  But, in general, we’ll only be able to use gates 
with a bounded number of inputs (bound is ~4 for most logic 
families). 
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ANDs and ORs with > 2 inputs 

€ 

= A ⋅ B ⋅C

€ 

= A ⋅ B ⋅C ⋅D

€ 

= A ⋅ B ⋅C ⋅D

Which one should I use? 

Chain: Propagation delay increases
 linearly with number of inputs 

Tree: Propagation delay increases
 logarithmically with number of inputs 

Replace 2-input AND gates with 2-input OR 
gates to create large fan-in OR gates 
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SOP w/ 2-input gates 

INV AND2 OR2 
tPD 8ps 15ps 18ps 
tCD 1ps 3ps 3ps 

Using the timing specs given to the 
left, what are tPD and tCD for this 
combinational circuit? 

Hint: to find overall tPD we need to 
find max tPD considering all paths 
from inputs to outputs. 

Previous example restricted to 2-input gates: 
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More Building Blocks 

NAND (not AND) 

€ 

= A ⋅ B

NOR (not OR) 

€ 

= A + B

XOR (exclusive OR) 

€ 

= A⊕ B

A B Z 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

CMOS gates are naturally inverting so we want to use NANDs and NORs 
in CMOS designs… 

XOR is very useful when implementing 
parity and arithmetic logic.  Also used 
as a “programmable inverter”: if A=0, 
Z=B; if A=1, Z=~B 

Wide fan-in XORs can be created with 
chains or trees of 2-input XORs. 

A B Z 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

A B Z 
0 0 1 
0 1 0 
1 0 0 
1 1 0 
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Universal Building Blocks 

 NANDs and NORs are universal: 

 Any logic function can be implemented using only NANDs 
(or, equivalently, NORs).  Note that chaining/treeing 
technique doesn’t work directly for creating wide fan-in 
NAND or NOR gates.  But wide fan-in gates can be created 
with trees involving both NANDs, NORs and inverters. 

= 

= 

= 

= 

= 

= 
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SOP with NAND/NOR 

When designing with NANDs and NORs one often makes use of 
De Morgan’s laws: 

NAND form: 

NOR form: 

So the following “SOP” circuits are all equivalent (note the use 
of De Morgan-ized symbols to make the inversions less 
confusing): 

€ 

A ⋅ B = A + B

€ 

A + B = A ⋅ B

= 

= 

AND/OR form NAND/NAND form NOR/NOR form 
All these “extra” inverters may seem less 
than ideal but often the buffering they 
provide will reduce the capacitive load on 
the inputs and increase the output drive. 

This will be handy in Lab 1 since 
you’ll be able to use just 7400’s 
to implement your circuit! 

De Morgan-ized NAND symbol 

De Morgan-ized NOR symbol 

De Morgan-ized 
Inverter 
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Logic Simplification 

•  Can we implement the same function with fewer gates? Before
 trying we’ll add a few more tricks in our bag. 

•  BOOLEAN ALGEBRA: 
 OR rules:     
AND rules:    
Commutative:   
Associative:    
Distributive:   
Complements: 
Absorption: 
De Morgan’s Law: 
Reduction: 

€ 

€ 

a +1=1 a + 0 = a a + a = a

€ 

a ⋅1=1 a ⋅ 0 = a a ⋅ a = a

€ 

a + b = b + a a ⋅ b = b ⋅ a

€ 

(a + b) + c = a + (b + c) (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)

€ 

a ⋅ (b + c) = a ⋅ b + a ⋅ c a + b ⋅ c = (a + b) ⋅ (a + c)

€ 

a + a =1 a ⋅ a = 0

€ 

a + a ⋅ b = a a + a ⋅ b = a + b a ⋅ (a + b) = a a ⋅ (a + b) = a ⋅ b

€ 

a ⋅ b + a ⋅ b = b (a + b) ⋅ (a + b) = b

€ 

a ⋅ b = a + b a + b = a ⋅ b

Key to simplification: equations that match the pattern of the LHS 
(where “b” might be any expression) tell us that when “b” is true, the 
value of “a” doesn’t matter.  So “a” can be eliminated from the equation, 
getting rid of two 2-input ANDs and one 2-input OR. 
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Boolean Minimization: 
An Algebraic Approach 

Lets simplify the equation from slide #3: 

Using the identity 

ααα =+ AA

For any expression α and variable A: 
€ 

Y = A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C

€ 

Y = A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C

€ 

Y = B ⋅C + A ⋅C + A ⋅ B

The tricky part: some terms participate in more than one 
reduction so can’t do the algebraic steps one at a time! 
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Karnaugh Maps: A Geometric Approach 

It’s cyclic. The left edge is adjacent to the right
 edge.   It’s really just a flattened out cube.  

000 001 

010 011 

100 101 

110 111 

Here’s the layout of a 3-variable K-map filled in
 with the values from our truth table: 

K-Map: a truth table arranged so that terms which differ by exactly one
 variable are adjacent to one another so we can see potential  reductions
 easily. 

Why did he 
shade that 
row Gray? 

A B C Y 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

AB 
Y 00 01 11 10 

C 
0 0 0 1 0 
1 0 1 1 1 

6.111 Fall 2008 13 Lecture 2 



On to Hyperspace 

Here’s a 4-variable K-map: 

Again it’s cyclic. The left edge is adjacent to the right edge, 
and the top is adjacent to the bottom. 

We run out of steam at 4 variables – K-maps are hard to draw and
 use in three dimensions (5 or 6 variables) and we’re not equipped to
 use higher dimensions (> 6 variables)! 

AB 
Z 00 01 11 10 

CD 

00 1 0 0 1 
01 0 0 0 0 
11 1 1 0 1 
10 1 1 0 1 
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Finding Subcubes 

We can identify clusters of “irrelevent” variables by circling
 adjacent subcubes of 1s. A subcube is just a lower dimensional
 cube. 

The best strategy is generally a greedy one. 
- Circle the largest N-dimensional subcube (2N adjacent 1’s) 

  4x4, 4x2, 4x1, 2x2, 2x1, 1x1 
- Continue circling the largest remaining subcubes 
     (even if they overlap previous ones) 
- Circle smaller and smaller subcubes until no 1s are left. 

AB 
Y 00 01 11 10 

C 
0 0 0 1 0 
1 0 1 1 1 

AB 
Z 00 01 11 10 

CD 

00 1 0 0 1 
01 0 0 0 0 
11 1 1 0 1 
10 1 1 0 1 

Three 2x1 subcubes Three 2x2 subcubes 
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Write Down Equations 
Write down a product term for the portion of each 
cluster/subcube that is invariant. You only need to include 
enough terms so that all the 1’s are covered. Result: a minimal 
sum of products expression for the truth table. 

We’re done! 

AB 
00 01 11 10 

C 
0 0 0 1 0 
1 0 1 1 1 

€ 

Y = A ⋅C + B ⋅C + A ⋅ B

AB 
Z 00 01 11 10 

CD 

00 1 0 0 1 
01 0 0 0 0 
11 1 1 0 1 
10 1 1 0 1 

€ 

Z = B ⋅D+ B ⋅C + A ⋅C
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Two-Level Boolean Minimization 
Two-level Boolean minimization is used to find a sum-of-products 
representation for a multiple-output Boolean function that is 
optimum according to a given cost function.  The typical cost 
functions used are the number of product terms in a two-level 
realization, the number of literals, or a combination of both. The 
two steps in two-level Boolean minimization are: 

• Generation of the set of prime product-terms for a given function. 

• Selection of a minimum set of prime terms to implement the 
function. 

We will briefly describe the Quine-McCluskey method which was 
the first algorithmic method proposed for two-level minimization 
and which follows the two steps outlined above.  State-of-the-art 
logic minimization algorithms are all based on the Quine-McCluskey 
method and also follow the two steps above. 

6.111 Fall 2008 17 Lecture 2 



Prime Term Generation 
Start by expressing your Boolean function using 0-
terms (product terms with no don’t care care entries).   
For compactness the table for example 4-input, 1-
output function F(w,x,y,z) shown to the right includes 
only entries where the output of the function is 1 and 
we’ve labeled each entry with it’s decimal equivalent. 

W X Y Z  label 
0 0 0 0    0 
0 1 0 1    5   
0 1 1 1    7 
1 0 0 0    8 
1 0 0 1    9 
1 0 1 0   10 
1 0 1 1   11 
1 1 1 0   14 
1 1 1 1   15 

Look for pairs of 0-terms that differ in only one bit position and merge 
them in a 1-term (i.e., a term that has exactly one ‘–’ entry).  Next 1-terms 
are examined in pairs to see if the can be merged into 2-terms, etc.  Mark 
k-terms that get merged into (k+1) terms so we can discard them later. 

 0, 8  -000 
 5, 7  01-1 
 7,15  -111 
 8, 9  100- 
 8,10  10-0 
 9,11  10-1 
10,11  101- 
10,14  1-10 
11,15  1-11 
14,15  111-  

1-terms:  8, 9,10,11  10-- 
10,11,14,15  1-1- 

2-terms: 

3-terms:  none! 

Label unmerged terms: 
these terms are prime! 

[A] 
[B] 
[C] 

[D] 
[E] 

Example due to 
Srini Devadas 
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Prime Term Table 
An “X” in the prime term table in row R and column C signifies that the 0-
term corresponding to row R is contained by the prime corresponding to 
column C. 

      A B C D E 
0000  X . . . . 
0101  . X . . . 
0111  . X X . . 
1000  X . . X . 
1001  . . . X . 
1010  . . . X X 
1011  . . . X X 
1110  . . . . X 
1111  . . X . X 

Each row with a single X signifies an essential prime term since any prime 
implementation will have to include that prime term because the 
corresponding 0-term is not contained in any other prime. 

A is essential 
B is essential 

D is essential 

E is essential 

In this example the essential primes “cover” all the 0-terms. 

Goal: select the minimum 
set of primes (columns) 
such that there is at least 
one “X” in every row.  This 
is the classical minimum 
covering problem. 
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Dominated Columns 

1. Prime table                           2. Table with A selected           3. Table with B & H removed 

     A B C D E F G H         B C D E F G H            C D E F G 
0000 X . . . . . . X    0101 X X . . . . .       0101 X . . . . 
0001 X X . . . . . .    0111 . X X . . . .       0111 X X . . . 
0101 . X X . . . . .    1000 . . . . . X X       1000 . . . . X 
0111 . . X X . . . .    1010 . . . . X X .       1010 . . . X X 
1000 . . . . . . X X    1110 . . . X X . .       1110 . . X X . 
1010 . . . . . X X .    1111 . . X X . . .       1111 . X X . . 
1110 . . . . X X . . 
1111 . . . X X . . . 

C dominates B, 
G dominates H 

C is essential 

G is essential 

Selecting C and G 
shows that only E is 
needed to complete 
the cover 

Some functions may not have essential primes (Fig. 1), so make arbitrary 
selection of first prime in cover, say A (Fig. 2).   A column U of a prime 
term table dominates V if U contains every row contained in V.   Delete the 
dominated columns (Fig. 3). 

This gives a prime cover of {A, C, E, G}.  Now backtrack to our choice of 
A and explore a different (arbitrary) first choice; repeat, remembering 
minimum cover found during search. 
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The Quine-McCluskey Method 
The input to the procedure is the prime term table T.  

1. Delete the dominated primes (columns) in T.  Detect essential primes in T by checking to see if 
any 0-term is contained by a single prime.  Add these essential primes to the selected set.  Repeat 
until no new essential primes are detected. 

2. If the size of the selected set of primes equals or exceeds the best solution thus far return 
from this level of recursion.  If there are no elements left to be contained, declare the selected 
set as the best solution recorded thus far. 

3. Heuristically select a prime.  

4. Add the chosen prime to the selected set and create a new table by deleting the prime and all 
0-terms that are contained by this prime in the original table.  Set T to this new table and go to 
Step 1. 

Then, create a new table by deleting the chosen prime from the original table without adding it to 
the selected set.  No 0-terms are deleted from the original table. Set T to this new table and go 
to Step 1.  

The good news: this technique generalizes to multi-output functions.  The 
bad news: the search time grows as 2^(2^N) where N is the number of 
inputs.  So most modern minimization systems use heuristics to make 
dramatic reductions in the processing time. 
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Logic that defies SOP simplification 

Ci 
0 
0 
0 
0 
1 
1 
1 
1 

A 
0 
0 
1 
1 
0 
0 
1 
1 

B 
0 
1 
0 
1 
0 
1 
0 
1 

S 
0 
1 
1 
0 
1 
0 
0 
1 

Co 
0 
0 
0 
1 
0 
1 
1 
1 

FA 

A B 

Co Ci 

S 

The sum S doesn’t have a simple sum-of-products implementation
 even though it can be implemented using only two 2-input XOR
 gates. 

Full Adder 

C/AB 00 01 11 10 

0 0 0 1 0 

1 0 1 1 1 
 

 

C/AB 00 01 11 10 

0 0 1 0 1 

1 1 0 1 0 
 

 

S 

CO 

€ 

S = A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C = A⊕ B⊕C

€ 

CO = A ⋅C + B ⋅C + A ⋅ B
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Logic Synthesis Using MUXes 

A 

B 
Y 

C 

If C is 1 then 
copy B to Y, 

otherwise copy 
A to Y 

2-input Multiplexer 

B 
C 
A 

Y 

A 

B 

C 

0 

1 

schematic Gate 
symbol 

C B A Y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

 

Truth Table 

0 
1 
0 
1S 

0 
1 
0 
1S 

0 
1 
0 
1S 

I0 
I1 

I2 
I3 

Y 

S0    S1 

A 4-input Mux 
implemented as 

a tree 
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Systematic Implementation of 
Combinational Logic 

Consider implementation of some
 arbitrary Boolean function, F(A,B) 

   ... using a MULTIPLEXER 
as the only circuit element: 

Full-Adder 
Carry Out Logic 

0 
1 
2 
3 
4 
5 
6 
7 

A,B,Cin 

Cout 

0 
0 
0 
1 
1 
0 
1 
1 

A B C Y 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Systematic Implementation of 
Combinational Logic 

Same function as on previous slide, but this
 time let’s use a 4-input mux 

Full-Adder 
Carry Out Logic 

0 
1 
2 
3 

A,B 

Cout 

0 
Cin 
Cin 
1 

A B C Y 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

6.111 Fall 2008 25 Lecture 2 



Xilinx Virtex II FPGA 

XC2V6000: 
•  957 pins, 684 IOBs 
•  CLB array: 88 cols x 96/col = 8448 CLBs 
•  18Kbit BRAMs = 6 cols x 24/col = 144 BRAMs = 2.5Mbits 
•  18x18 multipliers = 6 cols x 24/col = 144 multipliers 
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Virtex II CLB 

Figures from Xilinx Virtex II datasheet 

16 bits of RAM which can be configured as a 16x1 
single- or dual-port RAM, a 16-bit shift register, 
or a 16-location lookup table 
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Virtex II Slice Schematic 

Figures from Xilinx Virtex II datasheet 
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Virtex II Sum-of-products 

Figures from Xilinx Virtex II datasheet 
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