
Logic Synthesis
•  Truth tables and sum-of-products
•  Primitive logic gates, universal gates
•  Logic simplification
•  Karnaugh Maps, Quine-McCluskey
•  General implementation techniques:

 muxes and look-up tables (LUTs)

6.111 Fall 2008 1 Lecture 2

Reminder: Lab #1 due this Thursday!

Functional Specifications

Output “1” if at
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.
I will generate a valid
output in no more than

2 minutes after
seeing valid inputs

input A
input B
input C

output Y

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

An concise, unambiguous technique for giving the functional
specification of a combinational device is to use a truth table to
specify the output value for each possible combination of input values
(N binary inputs -> 2N possible combinations of input values).

3 binary inputs
so 23 = 8 rows in our truth table

6.111 Fall 2008 2 Lecture 2

Here’s a Design Approach

-it’s systematic!
-it works!
-it’s easy!
-are we done yet???

1.  Write out our functional spec as a truth
table

2.  Write down a Boolean expression with
terms covering each ‘1’ in the output:

This approach creates equations of a
particular form called

SUM-OF-PRODUCTS

Sum (+): ORs
Products (•): ANDs

€

Y = A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

6.111 Fall 2008 3 Lecture 2

S-O-P Building Blocks

INVERTER:

€

= A

A Z
0 1
1 0

AND:

€

= A ⋅ B

A B Z
0 0 0
0 1 0
1 0 0
1 1 1

OR:

€

= A + B

A B Z
0 0 0
0 1 1
1 0 1
1 1 1

Bubble indicates
inversion

6.111 Fall 2008 4 Lecture 2

Straightforward Synthesis

We can use
 SUM-OF-PRODUCTS

to implement any logic
function.

Only need 3 gate types:
 INVERTER, AND, OR

Propagation delay:
•  3 levels of logic
•  No more than 3 gate delays assuming gates with an arbitrary

number of inputs. But, in general, we’ll only be able to use gates
with a bounded number of inputs (bound is ~4 for most logic
families).

6.111 Fall 2008 5 Lecture 2

ANDs and ORs with > 2 inputs

€

= A ⋅ B ⋅C

€

= A ⋅ B ⋅C ⋅D

€

= A ⋅ B ⋅C ⋅D

Which one should I use?

Chain: Propagation delay increases
 linearly with number of inputs

Tree: Propagation delay increases
 logarithmically with number of inputs

Replace 2-input AND gates with 2-input OR
gates to create large fan-in OR gates

6.111 Fall 2008 6 Lecture 2

SOP w/ 2-input gates

INV AND2 OR2
tPD 8ps 15ps 18ps
tCD 1ps 3ps 3ps

Using the timing specs given to the
left, what are tPD and tCD for this
combinational circuit?

Hint: to find overall tPD we need to
find max tPD considering all paths
from inputs to outputs.

Previous example restricted to 2-input gates:

6.111 Fall 2008 7 Lecture 2

More Building Blocks

NAND (not AND)

€

= A ⋅ B

NOR (not OR)

€

= A + B

XOR (exclusive OR)

€

= A⊕ B

A B Z
0 0 0
0 1 1
1 0 1
1 1 0

CMOS gates are naturally inverting so we want to use NANDs and NORs
in CMOS designs…

XOR is very useful when implementing
parity and arithmetic logic. Also used
as a “programmable inverter”: if A=0,
Z=B; if A=1, Z=~B

Wide fan-in XORs can be created with
chains or trees of 2-input XORs.

A B Z
0 0 1
0 1 1
1 0 1
1 1 0

A B Z
0 0 1
0 1 0
1 0 0
1 1 0

6.111 Fall 2008 8 Lecture 2

Universal Building Blocks

 NANDs and NORs are universal:

 Any logic function can be implemented using only NANDs
(or, equivalently, NORs). Note that chaining/treeing
technique doesn’t work directly for creating wide fan-in
NAND or NOR gates. But wide fan-in gates can be created
with trees involving both NANDs, NORs and inverters.

=

=

=

=

=

=

6.111 Fall 2008 9 Lecture 2

SOP with NAND/NOR

When designing with NANDs and NORs one often makes use of
De Morgan’s laws:

NAND form:

NOR form:

So the following “SOP” circuits are all equivalent (note the use
of De Morgan-ized symbols to make the inversions less
confusing):

€

A ⋅ B = A + B

€

A + B = A ⋅ B

=

=

AND/OR form NAND/NAND form NOR/NOR form
All these “extra” inverters may seem less
than ideal but often the buffering they
provide will reduce the capacitive load on
the inputs and increase the output drive.

This will be handy in Lab 1 since
you’ll be able to use just 7400’s
to implement your circuit!

De Morgan-ized NAND symbol

De Morgan-ized NOR symbol

De Morgan-ized
Inverter

6.111 Fall 2008 10 Lecture 2

Logic Simplification

•  Can we implement the same function with fewer gates? Before
 trying we’ll add a few more tricks in our bag.

•  BOOLEAN ALGEBRA:
 OR rules:
AND rules:
Commutative:
Associative:
Distributive:
Complements:
Absorption:
De Morgan’s Law:
Reduction:

€

€

a +1=1 a + 0 = a a + a = a

€

a ⋅1=1 a ⋅ 0 = a a ⋅ a = a

€

a + b = b + a a ⋅ b = b ⋅ a

€

(a + b) + c = a + (b + c) (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)

€

a ⋅ (b + c) = a ⋅ b + a ⋅ c a + b ⋅ c = (a + b) ⋅ (a + c)

€

a + a =1 a ⋅ a = 0

€

a + a ⋅ b = a a + a ⋅ b = a + b a ⋅ (a + b) = a a ⋅ (a + b) = a ⋅ b

€

a ⋅ b + a ⋅ b = b (a + b) ⋅ (a + b) = b

€

a ⋅ b = a + b a + b = a ⋅ b

Key to simplification: equations that match the pattern of the LHS
(where “b” might be any expression) tell us that when “b” is true, the
value of “a” doesn’t matter. So “a” can be eliminated from the equation,
getting rid of two 2-input ANDs and one 2-input OR.

6.111 Fall 2008 11 Lecture 2

Boolean Minimization:
An Algebraic Approach

Lets simplify the equation from slide #3:

Using the identity

ααα =+ AA

For any expression α and variable A:
€

Y = A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C

€

Y = A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C

€

Y = B ⋅C + A ⋅C + A ⋅ B

The tricky part: some terms participate in more than one
reduction so can’t do the algebraic steps one at a time!

6.111 Fall 2008 12 Lecture 2

Karnaugh Maps: A Geometric Approach

It’s cyclic. The left edge is adjacent to the right
 edge. It’s really just a flattened out cube.

000 001

010 011

100 101

110 111

Here’s the layout of a 3-variable K-map filled in
 with the values from our truth table:

K-Map: a truth table arranged so that terms which differ by exactly one
 variable are adjacent to one another so we can see potential reductions
 easily.

Why did he
shade that
row Gray?

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

6.111 Fall 2008 13 Lecture 2

On to Hyperspace

Here’s a 4-variable K-map:

Again it’s cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

We run out of steam at 4 variables – K-maps are hard to draw and
 use in three dimensions (5 or 6 variables) and we’re not equipped to
 use higher dimensions (> 6 variables)!

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

6.111 Fall 2008 14 Lecture 2

Finding Subcubes

We can identify clusters of “irrelevent” variables by circling
 adjacent subcubes of 1s. A subcube is just a lower dimensional
 cube.

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1’s)

 4x4, 4x2, 4x1, 2x2, 2x1, 1x1
- Continue circling the largest remaining subcubes
 (even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

AB
Y 00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

Three 2x1 subcubes Three 2x2 subcubes

6.111 Fall 2008 15 Lecture 2

Write Down Equations
Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1’s are covered. Result: a minimal
sum of products expression for the truth table.

We’re done!

AB
00 01 11 10

C
0 0 0 1 0
1 0 1 1 1

€

Y = A ⋅C + B ⋅C + A ⋅ B

AB
Z 00 01 11 10

CD

00 1 0 0 1
01 0 0 0 0
11 1 1 0 1
10 1 1 0 1

€

Z = B ⋅D+ B ⋅C + A ⋅C

6.111 Fall 2008 16 Lecture 2

Two-Level Boolean Minimization
Two-level Boolean minimization is used to find a sum-of-products
representation for a multiple-output Boolean function that is
optimum according to a given cost function. The typical cost
functions used are the number of product terms in a two-level
realization, the number of literals, or a combination of both. The
two steps in two-level Boolean minimization are:

• Generation of the set of prime product-terms for a given function.

• Selection of a minimum set of prime terms to implement the
function.

We will briefly describe the Quine-McCluskey method which was
the first algorithmic method proposed for two-level minimization
and which follows the two steps outlined above. State-of-the-art
logic minimization algorithms are all based on the Quine-McCluskey
method and also follow the two steps above.

6.111 Fall 2008 17 Lecture 2

Prime Term Generation
Start by expressing your Boolean function using 0-
terms (product terms with no don’t care care entries).
For compactness the table for example 4-input, 1-
output function F(w,x,y,z) shown to the right includes
only entries where the output of the function is 1 and
we’ve labeled each entry with it’s decimal equivalent.

W X Y Z label
0 0 0 0 0
0 1 0 1 5
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 1 0 14
1 1 1 1 15

Look for pairs of 0-terms that differ in only one bit position and merge
them in a 1-term (i.e., a term that has exactly one ‘–’ entry). Next 1-terms
are examined in pairs to see if the can be merged into 2-terms, etc. Mark
k-terms that get merged into (k+1) terms so we can discard them later.

 0, 8 -000
 5, 7 01-1
 7,15 -111
 8, 9 100-
 8,10 10-0
 9,11 10-1
10,11 101-
10,14 1-10
11,15 1-11
14,15 111-

1-terms: 8, 9,10,11 10--
10,11,14,15 1-1-

2-terms:

3-terms: none!

Label unmerged terms:
these terms are prime!

[A]
[B]
[C]

[D]
[E]

Example due to
Srini Devadas

6.111 Fall 2008 18 Lecture 2

Prime Term Table
An “X” in the prime term table in row R and column C signifies that the 0-
term corresponding to row R is contained by the prime corresponding to
column C.

 A B C D E
0000 X
0101 . X . . .
0111 . X X . .
1000 X . . X .
1001 . . . X .
1010 . . . X X
1011 . . . X X
1110 X
1111 . . X . X

Each row with a single X signifies an essential prime term since any prime
implementation will have to include that prime term because the
corresponding 0-term is not contained in any other prime.

A is essential
B is essential

D is essential

E is essential

In this example the essential primes “cover” all the 0-terms.

Goal: select the minimum
set of primes (columns)
such that there is at least
one “X” in every row. This
is the classical minimum
covering problem.

6.111 Fall 2008 19 Lecture 2

Dominated Columns

1. Prime table 2. Table with A selected 3. Table with B & H removed

 A B C D E F G H B C D E F G H C D E F G
0000 X X 0101 X X 0101 X
0001 X X 0111 . X X 0111 X X . . .
0101 . X X 1000 X X 1000 X
0111 . . X X 1010 X X . 1010 . . . X X
1000 X X 1110 . . . X X . . 1110 . . X X .
1010 X X . 1111 . . X X . . . 1111 . X X . .
1110 X X . .
1111 . . . X X . . .

C dominates B,
G dominates H

C is essential

G is essential

Selecting C and G
shows that only E is
needed to complete
the cover

Some functions may not have essential primes (Fig. 1), so make arbitrary
selection of first prime in cover, say A (Fig. 2). A column U of a prime
term table dominates V if U contains every row contained in V. Delete the
dominated columns (Fig. 3).

This gives a prime cover of {A, C, E, G}. Now backtrack to our choice of
A and explore a different (arbitrary) first choice; repeat, remembering
minimum cover found during search.

6.111 Fall 2008 20 Lecture 2

The Quine-McCluskey Method
The input to the procedure is the prime term table T.

1. Delete the dominated primes (columns) in T. Detect essential primes in T by checking to see if
any 0-term is contained by a single prime. Add these essential primes to the selected set. Repeat
until no new essential primes are detected.

2. If the size of the selected set of primes equals or exceeds the best solution thus far return
from this level of recursion. If there are no elements left to be contained, declare the selected
set as the best solution recorded thus far.

3. Heuristically select a prime.

4. Add the chosen prime to the selected set and create a new table by deleting the prime and all
0-terms that are contained by this prime in the original table. Set T to this new table and go to
Step 1.

Then, create a new table by deleting the chosen prime from the original table without adding it to
the selected set. No 0-terms are deleted from the original table. Set T to this new table and go
to Step 1.

The good news: this technique generalizes to multi-output functions. The
bad news: the search time grows as 2^(2^N) where N is the number of
inputs. So most modern minimization systems use heuristics to make
dramatic reductions in the processing time.

6.111 Fall 2008 21 Lecture 2

Logic that defies SOP simplification

Ci
0
0
0
0
1
1
1
1

A
0
0
1
1
0
0
1
1

B
0
1
0
1
0
1
0
1

S
0
1
1
0
1
0
0
1

Co
0
0
0
1
0
1
1
1

FA

A B

Co Ci

S

The sum S doesn’t have a simple sum-of-products implementation
 even though it can be implemented using only two 2-input XOR
 gates.

Full Adder

C/AB 00 01 11 10

0 0 0 1 0

1 0 1 1 1

C/AB 00 01 11 10

0 0 1 0 1

1 1 0 1 0

S

CO

€

S = A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C + A ⋅ B ⋅C = A⊕ B⊕C

€

CO = A ⋅C + B ⋅C + A ⋅ B

6.111 Fall 2008 22 Lecture 2

Logic Synthesis Using MUXes

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B
C
A

Y

A

B

C

0

1

schematic Gate
symbol

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
implemented as

a tree

6.111 Fall 2008 23 Lecture 2

Systematic Implementation of
Combinational Logic

Consider implementation of some
 arbitrary Boolean function, F(A,B)

 ... using a MULTIPLEXER
as the only circuit element:

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
1
0
1
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

6.111 Fall 2008 24 Lecture 2

Systematic Implementation of
Combinational Logic

Same function as on previous slide, but this
 time let’s use a 4-input mux

Full-Adder
Carry Out Logic

0
1
2
3

A,B

Cout

0
Cin
Cin
1

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

6.111 Fall 2008 25 Lecture 2

Xilinx Virtex II FPGA

XC2V6000:
•  957 pins, 684 IOBs
•  CLB array: 88 cols x 96/col = 8448 CLBs
•  18Kbit BRAMs = 6 cols x 24/col = 144 BRAMs = 2.5Mbits
•  18x18 multipliers = 6 cols x 24/col = 144 multipliers

Figures from Xilinx Virtex II datasheet 6.111 Fall 2008 26 Lecture 2

Virtex II CLB

Figures from Xilinx Virtex II datasheet

16 bits of RAM which can be configured as a 16x1
single- or dual-port RAM, a 16-bit shift register,
or a 16-location lookup table

6.111 Fall 2008 27 Lecture 2

Virtex II Slice Schematic

Figures from Xilinx Virtex II datasheet

6.111 Fall 2008 28 Lecture 2

Virtex II Sum-of-products

Figures from Xilinx Virtex II datasheet

6.111 Fall 2008 29 Lecture 2

