
FPGA side scrolling 
videogame

Telmo Luis Correa Junior



Gameplay concept

• 2D environment
• Side-view camera angle
• Hardware support to 

multiple possible genres

– Platformer
– Shoot ‘em up
– Pacman



Implementation concept

• Most computation effectuated by software 
(Assembly game code)

• Hardware support for slow operations
– Sprites
– Collision detection
– Audio (optional)

CPU GPU

Graphics
ROM

APU
Audio
ROM

VGA

A
udio



Implementation overview

• Microprocessor: “beta”
• Graphics processing unit

– Sprite management
– VGA signal generation
– Collision detection

• Audio processing unit (optional)
– Background music (wavetable synth)
– Event-triggered sound effects (ROM)



Microprocessor

• Modified beta: opcode used for 
communicating with other hardware 
modules
– Stall the processor for a cycle (behave like a 

NOP)
– Send a control signal to other hardware, 

which has read-access to part of the regfile



Graphics processing unit

• Capabilities:
– Display up to 32 sprites on the screen
– Receives high-level commands from CPU 

about sprite management (create sprite, 
change sprite type, destroy sprite, pan 
screen, etc.)

– Reports sprite overlap as interrupts



Collision
OR

Graphics processing unit

Blob
manager

Blob Blob Blob Blob Blob Blob…

Interrupt
generator

…

VGA 
generator

Pixel selection tree

Sprite
loader

Graphics
ROM



Graphics processing unit

• Core of hardware design process
• Main modules:

– Blob manager: reads commands from CPU, sends commands 
down a control bus to the blobs

– Blob (x32): responsible for displaying and animating one 
instance of a sprite, or a collision block

– Sprite loader: accesses the ROM, one sprite at a time
– Pixel selection tree: selects which pixel output from a blob 

should be displayed, detects collisions
– Interrupt generator: sends an interrupt request to the CPU if the 

collision status of a blob was changed
– VGA generator: sends coordinates of a pixel to the blob 

manager, receives it from the pixel selection tree, and produces
the VGA signal 



Blob manager

• Controls all blobs
• Responsible for interpreting instructions 

from CPU registers
• Translates screen coordinates received 

from VGA generator into absolute 
coordinates for blobs



Blob manager

• Inputs: clock, CPU, VGA
– From CPU

• Hardware output control signal
• Registers 0 through 3

– From VGA generator
• Pixel coordinates

• Output: blob control bus, pixel selector
– To all blobs

• Control signals

– To pixel selector
• Background color



Blob

• Little FSM
– S_NONE: blob does not represent an entity
– S_SPRITE: blob represents an instance of a 

sprite
– S_PLATFORM: blob represents an invisible 

rectangle, that might be collided with
– S_TILED_SPRITE: blob represents a 

rectangle filled with copies of a same sprite



Blob

• Internal state
– The sprite itself
– X1, Y1 coordinates
– X2, Y2 coordinates (if platform or tiled sprite)
– Sprite type
– Animation step
– Animated sprite
– Collidable sprite (clip bit)
– Enemy sprite (enemy bit)
– Sprite layer



Blob

• Input: 
– blob manager control bus
– sprite loader

• Output
– To pixel selection tree

• Pixel

• Blob ID

• Collision control info (layer, clip bit, enemy bit)

– To sprite loader
• Sprite request



Sprite loader

• Accesses the ROM
• Receives requests from all blobs (serial 

scanning)
• Copies requested sprite into target blob’s 

memory



Pixel selection tree

• Input: all blobs’ output, background pixel 
color

• Output:
– To VGA generator: 

• pixel

– To Interrupt generator:
• 32x collision info (32x 2 bits)

– Sprite collides with non-enemy sprite

– Sprite collides with enemy sprite



Audio processing unit (optional)

Audio
manager

Wavetable Sound effectsBGM

Wavetable
synth

Audio
blob

Audio
blob

Audio
blob

Audio loader

Adder

ROM


