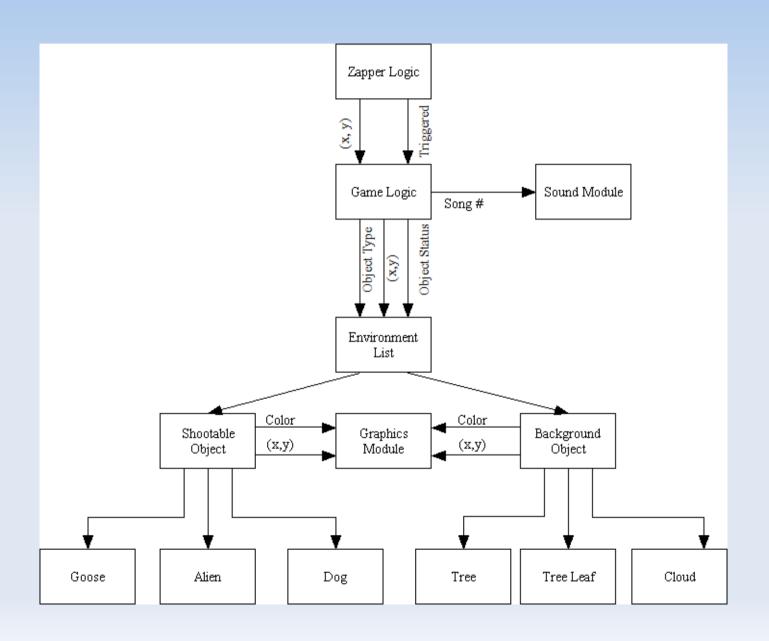
FPGA Hunt

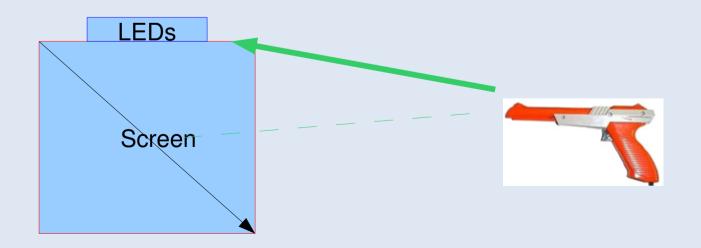


Shooting the dog... Priceless

FPGA Hunt Overview

- Duck Hunt 2.0
 - More Creature Types
 - Dynamic Gaming Experience
 - Shoot the Annoying Dog
 - Improved Graphics
 - Functions on any screen (LCD/CRT...)

Block Diagram


Zapper Functionality

- Uses LED's around LCD to determine direction
- Connects to PC via USB
- Will Utilize Logic Analyzer to Help Integrate

Zapper Logic

- Informs Game Logic Unit when Trigger Pressed
- Translates coordinates from Zapper to GLU
- Calibrates Zapper for Any Screen Size

Game Logic Module

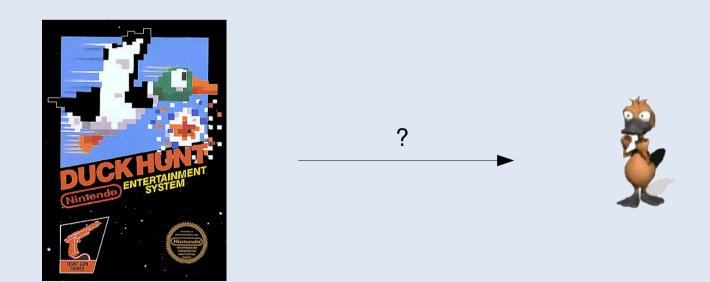

- Inputs
 - -Triggered
 - -(x,y)
- Outputs:
 - Object type
 - Object Position
 - Object Status
 - Game Time
 - Player Score
 - Player Health / Ammo (If Time Permits)

Game Logic Internal Workings

- Finite State Machine
 - Updates every 1/60th of a second
 - Each state correlates to a scene/level
 - At beginning of each level, spawn enemies
 - Upon trigger, test position for enemy collision
 - Vary fuzziness related to current difficulty level

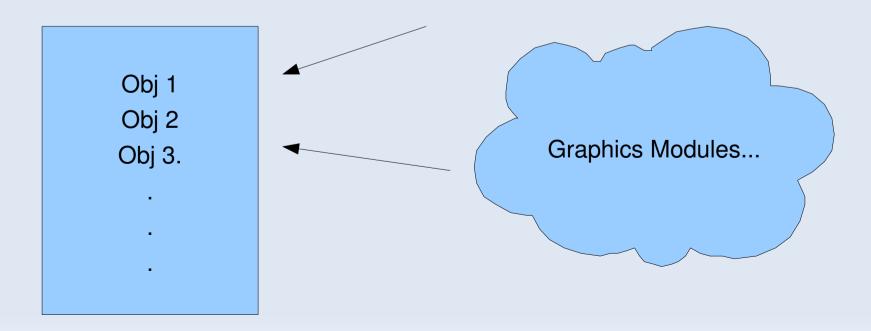
Upon certain events (enemy de

Update Score, Change St


Start of State

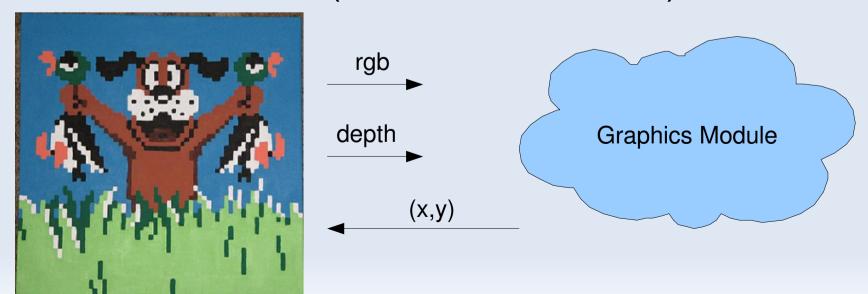
Graphics Overview

- Objects read from Environment Lists
- Graphics farmed out to submodules
- Pixels rendered in order of depth



Graphics Main Module

- Driven by pixel clock
- Asks each object for a pixel and its depth
- Picks pixel based on depth comparison


Environment Lists

- Decouples Dependency on GLU
- Encodes Obj Imformation in Registers
- Generalizes The Objects on Screen

What is a an Object?

- Animated Objects Goose, Dog
- Background Objs Trees, Clouds
- Each is a module
- Will maintain state (unrelated to GLU)

Graphic Modularity

Memory Usage

My One True Fear

8 Shootable Objs + 8 Background Objs = 16 Objects

n Sprites per Object = 16n

Assume a max 200x200 pixels per obj:

40,000 pixels * 16n = 640,000*n pixels

640,000 * 3 bits = 234*n kilobytes

We have 4 MB ram...

4 MB / 234 kB = ~17 sprites / obj !!!

Development Time Line

Four Milestones

Module	Game Logic <i>Peak</i>	Graphics <i>Pete</i>	Zapper/Sound <i>Fareed</i>
Milestone Monday, Nov 19th	Interface to Zapper Make one Goose Move	1 Sprite fully functional (Including fly/die)	Obtain Zapper from Hong Kong
	Make one Goose Move	(including hy/die)	
Monday, Nov 26th	Write multiple objects to environment list	Read object from env list Finish Background	Determine pin out Output to GLU on trigger
	Test integration with	Eull integration w/	Zannau aslibuation for LCD
Monday, Dec 3rd	Test integration with Graphics and Zapper	Full integration w/ Game Logic	Zapper calibration for LCD Position output to GL
Monday, Dec 10th	Testing/debug completed	Testing complete	Work on sound (if time allows)
Profiday, Dec Total	Implement extra user state	More advanced graphics	work on sound (if time anows)

Acknowledgements

- Owlo.com Green Feathers Image
- Nintendo DuckHunt Images