
Daniel Southern
Rachel Bainbridge
October 30th, 2007
6.111 Project Proposal

Optical Input Targeting Game

 Our Duck Hunt game will function similarly to the Duck Hunt of the original
NES. A laser aimed at a computer screen will function as the "gun" and a camera
will be used to locate this laser and a red dot will be displayed by the game at its
location. The player will also be able to fire the gun by pressing the enter button
on the lab kit. The computer screen will display a gaming environment similar to
that of the original Duck Hunt. Animated ducks will fly across the screen one at a
time and the score will also be displayed in the upper left hand corner of the
screen.

 Our implementation of the Duck Hunt game consists of two major parts: the
video output to the screen which will be handled by Rachel Bainbridge and the
input from the camera that locates the laser pointer which will be handled by Dan
Southern.

Video Output Module – Rachel Bainbridge
 There are three modules planned for the video output, thought more may be
added to deal with frame buffering. Sprites from the original Duck Hunt game will
be used for the background and for the animated duck. They will be stored on a
ROM and read off through the indexer module, which will allow the Drawer to
reference a sprite simply as "tree" or "duck2." the indexer will interpret such
statements into physical memory addresses and read out the correct pixel values.
For instance in Duck0 were to be stored in the first ten lines of memory, the
indexer would know that Duck1 began on the 11th line of memory and be able to
find it there.

Drawer Module – Draw background duck and cursor
 The two main modules are the Drawer and the Duck module. The drawer will
take an x and y input, two 10-bit values, from the camera and draw a small red
blob at those coordinates. It also takes a control signal from the camera logic to
help with callibration. Depending on the signal, the screen may flash horizontal or
vertical lines, or a border around the screen. Lastly, it takes an input from the
enter button that tells the module whether a shot has been fired. If that signal
goes high, the drawer will compare the duck coordinates to the laser coordinates
to determine whether the duck has been hit and send a signal to the duck
module. The drawer module is also in charge of creating the graphics of screen. It
will ask the indexer for the sprites it needs and draw them in the correct locations.
There will be a bunch of static sprites used for the background and an animated
sprite for the duck. The pixels of the background will be or'ed together, but muxes

will be used to make sure the duck is displayed on top of background elements.
The duck module will send the players score to the drawer and that will also be
displayed on the screen in the form no. duck hit / no. ducks released. The output
to the screen will be in HSV.

Duck Module – manage score and duck behavior
 The duck module will handle the movement of the duck and the calculation
of the score. The duck will like the puck in the pong game, except that it will be
allowed to bounce out of the top of the screen. The player can change the speed
of the duck to increase or decrease difficulty. If a duck is hit, it will fall vertically to
the ground, the player's score will be increased, and a new duck will be started. A
new duck will also be started if the duck flies beyond the top of the screen. The
duck module will also tell the drawer what type of duck needs to be drawn. The
duck sprite will change every few frames to give the illusion that it is flapping its
wings.

Figure 1. Video Output Module Block Diagram

Testing

Each module will be tested individually and then together. Since the duck is
similar to the pong game, code can be reused and is almost guaranteed to
function correctly. Testing will most likely begin with getting the background to
display correctly and have the duck moving around. Switches can be used to turn
on and off different parts to see if something is functioning correctly independent
of other modules. In the end, the input and the output will need to be tested
together.

Video Input Processing Module – Daniel Southern

The project's other primary component will be a module to process incoming
video information through the labkit's ADV7185 NTSC decoder. The module will
scan through the incoming video in real time searching for the “cursor” in the
form of a dot of red light (supplied by aiming a red laser pointer at an object in
the camera's field of view). The module will identify the location of the dot by
examining the relative luminosity in a range of chrominance of pixels to find a
spot of reddish light that is brighter than the pixels surrounding it.

List of Modules Required:
ADV7185 To Frame Buffer Interface – Module to write output of NTSC
decoder into frame buffer

• Input – pixels out of the NTSC decoder (8-bit Y, 8-bit Cb, 8-bit Cr)
• Output – frame buffer write port memory control signals (write address,

write enable)
• Output – pixel information (8-bit Y, 8-bit Cb, 8-bit Cr)

This module will capture the pixel output information from the ADV7185 and
write it into a frame buffer memory. This module will need to operate at the speed
of the incoming NTSC signal, which is 27 Mhz. The module will determine which
position of the frame buffer to write the data into based on the position data
which is also generated by the ADV7185.

When the ADV7185 signals that there is data ready to be read, this module
will generate the necessary control signals for writing into the frame buffer,
perform the write, then signal to the ADV7185 that the pixel information has been
read.

Pixel Analyzer – Module to scan through the frame buffer, find position of the
cursor

This module will read through the frame buffer pixel by pixel performing a search
for the “cursor” described above. Operations on each pixel will include a
conversion in the HSV color space to simplify color identification and relative
luminosity comparisons. The amount of computation necessary for each pixel
force this process to run at a speed slower than 27Mhz. However, there will be
not be significant performance degradation even at much slower speeds since
there are segments of the NTSC signal which do not contain active pixel
information, etc.

Even if the processing turns out to be computationally intensive such that
we cannot completely analyze each frame before it is being replaced by the next
image, it shouldn't affect our cursor location algorithm since the location of the
cursor will be fairly continuous over 1/60th of a second intervals.

Decoupling the processes of writing incoming camera data into a frame
buffer and analyzing the data largely eliminates timing concerns with our pixel

processing circuitry since data can be read from and written into the frame buffer
at different rates.

Submodules
YCbYcr to HSV Converter – Reads a pixel out of the frame buffer on each cycle
and converts it to an HSV pixel

• Input – frame buffer read port data (1 Pixel – 8-bit Y, 8-bit Cb, 8-bit Cr)
• Output – frame buffer read port control signals (read address)
• Output – (x, y) coordinate of the cursor (two 10-bit numbers)

This Module is responsible for generating control signals for the frame buffer
to read the pixels out in the correct order (i.e. iterating across each row and
column). The value will be converted to the HSV color space producing 8-bit
values for H, S, and V normalized to the range 0 - 255.

Center of Mass Calculator – Filters out pixels according to their HSV values and
a preprogrammed set of rules, finds center of mass of matching pixels

• Input – pixel in HSV format (8-bits for each of H, S, V)
• Output – Center of mass coordinate (two 10-bit numbers)

This module will look at HSV values, filtering for sets of coordinates
corresponding to pixels matching these criteria. We will compute the center of
mass of this set of values, and produce a new (x, y) coordinate after each pass
through the frame buffer.

Input Coordinate to Output Coordinate Converter – Takes the coordinate
produced by the weighted average of matching pixels and and produces the
corresponding coordinate in the output image.

• Input – (x, y) coordinate of the cursor (two 10-bit numbers)
• Input – Calibration Parameters
• Output – calibrated (x', y') position of the cursor (two 10-bit numbers)

This module will perform some transformation on the (x, y) coordinates in
order to map the input image space onto the output image space. Displaying a
dot on the screen in the new coordinates (x', y') should theoretically display the
dot immediately underneath the red dot of light. If this is not the case, then the
calibration parameters will need to be adjusted – either manually or through some
automatic routine programmed into the system, depending on the level of
complexity we are able to include.

Other Considerations
One fundamental element of this design is the mapping of positions in the

camera input space to position in the NTSC output space. There are several
degrees of freedom which could be taken into account, such as

• Scaling – even in if the camera was perfectly aligned with our video output
source, we would still have the issue of differences in size between a single
pixel in the input image and a pixel in the output image. We plan to operate

with the output image being located entirely inside the input image to ensure
that we can capture the entire screen. We also, for example, plan to use
calibration patterns such as a rectangle around the edge of the screen which
will require that the entire output image be visible in the input image.

• Skew, Both Horizontal and Vertical – If the plane of the image received by the
camera is not parallel to the plane of the screen, then we will observe some
combination of two effects: the top of the screen will appear larger/smaller
than the bottom of the screen in the input image, and the left side of the
screen will appear larger/smaller than the right side.

• Rotation – If the camera is not rotationally aligned with the screen, (i.e. the
edges of the image in the input signal are not perfectly horizontal or vertical),
then we will have to compensate for some rotation. This operation can be
characterized by a rotation around the center of the image

Figure 2. Video Input Processing Module Block Diagram

Testing
I plan to develop each module separately according the design specification,

testing along the way to ensure that each component works as required. I plan to
test the HSV module in ModelSim to ensure that all mathematical formulas
produce the correct results in all situations. I also plan to test the Center of Mass
Calculator Module in ModelSim, as its numerical results will be easy to verify in
this way. I will test the frame buffer and the two frame buffer interfaces by
capturing video from the NTSC, storing it in the frame buffer, then reading from
the frame buffer to display it out on the VGA. I will then add each module in
succession to the complete system and ensure that at each step we have the
desired functionality and there are no new incompatibilities between the modules
interfaces.

Input
Frame Buffer

ADV7185 to Frame
Buffer Interface

YcbCr to HSV
Converter

Camera
Single
Pixel

(YCbCr)
Single Pixel (YcbCr)

Center of Mass
Calculator

Single Pixel (HSV)

Input Coord. to
Ouput Coord.

Converter

(x, y)

(x', y')

