
6.111 Fall 2006 - 1 of 6 - Midterm Exam

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Introductory Digital Systems Laboratory

Fall 2007

Midterm Exam: October 31, 2007

Name

This is an open book exam. Calculators can be used (but I don’t think you’ll
need one).

Please write your answers legibly in the spaces provided. Please use the
backs of the pages for scratch work and then make neat copies of your final
answers in the space provided. It’s hard to give credit if the answer is
illegible!

Problem Score

#1

#2

#3

Total

SOLUTIONS

6.111 Fall 2006 - 2 of 6 - Midterm Exam

Problem 1. (30 Points)

 For each of the parts below write one or more statements of Verilog that implement the
functionality shown in the schematic. Your Verilog just has to produce the same values for its
outputs – it doesn’t have to replicate the schematic logic gate-for-gate. Be sure to include the
appropriate declarations for any wires or regs used in your code, and please follow our
convention for the appropriate use of blocking and non-blocking assignments.

(A) (4 points) A circuit that tests an 8-bit value to see if it’s zero.

Schematic: Verilog:

(B) (4 points) A circuit to compute the 6-bit sum of two 5-bit operands.

Schematic: Verilog:

(C) (6 points) A circuit to compute the next value for a 16-bit program counter. RESET and

BRANCH are 1-bit signals, PC and NEXT_PC are 16-bit signals, and OFFSET is an 8-bit
signal in 2’s complement format (i.e., it can be either positive or negative).

Schematic: Verilog:

wire [7:0] A;
wire Z;

assign Z = (A == 0);

// alternatively…
assign Z = ~|A;

wire [4:0] A,B;
wire [5:0] SUM;

assign SUM = A + B;

wire [15:0] PC, NEXT_PC;
wire [7:0] OFFSET;
wire BRANCH, RESET;

// priority logic
// don’t forget to sign extend offset
assign NEXT_PC = RESET ? 16’h0000 :
 BRANCH ? PC + {{8{OFFSET[7]}},
 OFFSET[7:0]} :
 PC + 1;

6.111 Fall 2006 - 3 of 6 - Midterm Exam

(D) (6 points) A logic function implemented as a multiplexer-based lookup table.

Schematic: Verilog:

(E) (10 points) A circuit to compute an 8-bit CRC on a serial bit stream using XOR gates (⊕)

and 1-bit registers.

Schematic:

Verilog:

wire A,B,Z;

assign Z = A ^ B; // an XOR!

// alternatively…
wire A,B;
reg Z;
always @ (A or B)
 case ({A,B})
 2’b00: Z = 0;
 2’b01: Z = 1;
 2’b10: Z = 1;
 2’b11: Z = 0;
 default: Z = 1’bx;
 endcase

wire DATA,TMP,CLK;
reg [8:1] X;

assign TEMP = DATA ^ X[8];

always @ (posedge CLK)
 X <= {X[7:6],X[5]^TEMP,X[4]^TEMP,X[3:1],TEMP};

6.111 Fall 2006 - 4 of 6 - Midterm Exam

Problem 2. (40 Points)

You are an engineer working for NASA. They want you to design a FSM that will test their
newest rover Fido on the MIT campus. NASA wirelessly transmits the travel plans to Fido, and
then Fido moves according to that information.

To design your FSM, you first select the following locations around the MIT campus and assign
each location with a state in 3-bit binary representation: Killian[000], Kresge[001], Z-
Center[010], Syd-Pac[011], Student Center[100], Building 34[101], 6.111 Lab[110], and the Stata
Center[111].

To simplify your test, you inform NASA to send Fido’s FSM a binary sequence for travel plans
(e.g.‘1-0-0-0-1’ to cause Fido to move five times). In other words, Fido receives either ‘0’ or ‘1’
for each move and travels to the next destination as specified below. Fido starts off at Killian
Court for each test run, and your FSM should output Fido’s current location.

Killian [000]: If 0, stay at Killian. If 1, go to Kresge.
Kresge [001]: If 0, go to Z-Center. If 1, go to Student Center.
Z-Center [010]: If 0, go to Syd-Pac. If 1, go to Student Center.
Syd-Pac [011]: If 0, stay at Syd-Pac. If 1, go to Killian.
Student Center [100]: If 0, go to Stata Center. If 1, go to Building 34.
Building 34 [101]: If 0, go to Syd-Pac. If 1, go to 6.111 Lab.
6.111 Lab [110]: If 0, go to Stata Center. If 1, stay at 6.111 Lab.
Stata Center [111]: If 0, go to Kresge. If 1, go to Building 34.

(A) (14 points) Draw the state transition diagram for this FSM. Please use the back of an exam

page for scratch space and make a neat copy of your final diagram below.

 Draw state transition diagram.

(B) (3 points) If Fido is forever given a sequence of ones (i.e. 11111…), where will it eventually

end up?

 Final location: _______________

(C) (3 points) If Fido is forever given a sequence of 01s (i.e. 010101…), which location(s) will

it never visit?

 Location(s) never visited: _______________

6.111 Lab

6.111 Lab

6.111 Fall 2006 - 5 of 6 - Midterm Exam

(D) (20 points) Design a module in Verilog for this FSM – the following schematic shows the
appropriate inputs and outputs. Please use the back of an exam page as scratch space and
make neat copy of the final code here.

 Show your Verilog code.

module Fido(CLK,RESET,MOVE,STATE);
 input CLK,RESET,MOVE;
 output reg [2:0] STATE;

 always @ (posedge CLK) begin
 if (RESET) STATE <= 3’b000;
 else case (STATE)
 3’b000: STATE <= MOVE ? 3’b001 : 3’b000;
 3’b001: STATE <= MOVE ? 3’b100 : 3’b010;
 3’b010: STATE <= MOVE ? 3’b100 : 3’b011;
 3’b011: STATE <= MOVE ? 3’b000 : 3’b011;
 3’b100: STATE <= MOVE ? 3’b101 : 3’b111;
 3’b101: STATE <= MOVE ? 3’b110 : 3’b011;
 3’b110: STATE <= MOVE ? 3’b110 : 3’b111;
 3’b111: STATE <= MOVE ? 3’b101 : 3’b001;
 default: STATE <= 3’b000;
 endcase
 end
endmodule

6.111 Fall 2006 - 6 of 6 - Midterm Exam

Problem 3. (30 Points)

Consider the following Verilog module that uses Euclid’s algorithm to iteratively compute the
greatest common divisor of two 16-bit unsigned integer values Ain and Bin where Ain ≥ Bin.

module gcd(clk,start,Ain,Bin,answer,done);
 input clk,start;
 input [15:0] Ain,Bin;
 output reg [15:0] answer;
 output reg done;

 reg [15:0] a,b;
 always @ (posedge clk) begin
 if (start) begin a <= Ain; b <= Bin; done <= 0; end
 else if (b == 0) begin answer <= a; done <= 1; end
 else if (a > b) a <= a – b;
 else b <= b – a;
 end
endmodule

Please neatly complete the timing diagram below as the module computes the gcd of 21 and 15.
Use “???” to indicate values that cannot be determined from the information given.

